Methodology for Fifth Generation District Heating and Cooling Network Simulation
DOI:
https://doi.org/10.52825/isec.v1i.1123Keywords:
5GDHC, District Heating, District Cooling, Decentralized Heat PumpsAbstract
5th generation district heating and cooling networks (5GDHC) will play a rolein the reduction of CO2 emissions and the resilience to global warming. Our analysis of the literature points out that no simulation study proposes a comprehensive enough description of such networks. The simulation solution presented in this article considers the intertwined influences between the thermal-hydraulic balance in the network, the behavior of the decentralized heat pumps and chillers at substations, and the thermal coupling with the ground. For a given simulation scenario, the 3 developed models are iteratively solved until convergence is reached. After showing how the latter is handled,we exhibit an original result about the influence of the differential pressure between the hot and cold pipes.
Downloads
References
ADEME, “D´eveloppement des fili `eres r ´eseaux de chaleur et de froid renouvelables en france `a horizon 2050,” Nov. 2020.
The future of cooling. https://www.iea.org / reports / the - future - of - cooling, Accessed: 2023-09-19, 2018.
S. Buffa, M. Cozzini, M. D’Antoni, M. Baratieri, and R. Fedrizzi, “5th generation district heating and cooling systems: A review of existing cases in Europe,” en, Renewable and Sustainable Energy Reviews, vol. 104, pp. 504–522, Apr. 2019, ISSN: 13640321. DOI: 10.1016/j.rser.2018.12.059. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1364032118308608 (visited on 04/11/2023).
T. Sommer, A. Sotnikov, M. Sulzer, et al., “Hydrothermal challenges in low-temperature networks with distributed heat pumps,” en, Energy, vol. 257, p. 124 527, Oct. 2022, ISSN: 03605442. DOI: 10.1016/j.energy.2022.124527. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S036054422201430X (visited on 04/11/2023).
K. Gjoka, B. Rismanchi, and R. H. Crawford, “Fifth-generation district heating and cooling systems: A review of recent advancements and implementation barriers,” en, Renewable and Sustainable Energy Reviews, vol. 171, p. 112 997, Jan. 2023, ISSN: 13640321. DOI: 10.1016/j.rser.2022.112997. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1364032122008784 (visited on 04/13/2023).
H. Hirsch and A. Nicolai, “An efficient numerical solution method for detailed modelling of large 5th generation district heating and cooling networks,” en, Energy, vol. 255, p. 124 485, Sep. 2022, ISSN: 03605442. DOI: 10.1016/j.energy.2022.124485. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0360544222013883 (visited on 05/24/2023).
M. Abugabbara, J. Lindhe, S. Javed, H. Bagge, and D. Johansson, “Modelica-based simulations of decentralised substations to support decarbonisation of district heating and cooling,” en, Energy Reports, vol. 7, pp. 465–472, Oct. 2021, ISSN: 23524847. DOI: 10.1016/j.egyr.2021.08.081. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S2352484721006831 (visited on 04/11/2023).
R. Toffanin, P. Caputo, M. Belliardi, and V. Curti, “Low and Ultra-Low Temperature District Heating Equipped by Heat Pumps—An Analysis of the Best Operative Conditions for a Swiss Case Study,” en, Energies, vol. 15, no. 9, p. 3344, May 2022, ISSN: 1996-1073. DOI: 10.3390/en15093344. [Online]. Available: https://www.mdpi.com/1996-1073/15/9/3344 (visited on 06/09/2023).
F. Bünning, M. Wetter, M. Fuchs, and D. M¨ uller, “Bidirectional low temperature district energy systems with agent-based control: Performance comparison and operation optimization,”en, Applied Energy, vol. 209, pp. 502–515, Jan. 2018, ISSN: 03062619. DOI: 10.1016/j.apenergy.2017.10.072. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0306261917314940 (visited on 04/17/2023).
Y. Adihou, M. Kane, J. Ramousse, and B. Souyri, “An exergy-based district heating modeling for optimal thermo-hydraulic flow distribution: Application to bluefactory’s smart living lab neighborhood,” in Proceedings of ECOS 2020-The 33rd International Conferenceon Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 29 June-3 July 2020, Osaka, Japan, 29 June-3 July 2020, 2020.
A. Maccarini, A. Sotnikov, T. Sommer, M. Wetter, M. Sulzer, and A. Afshari, “Influence of building heat distribution temperatures on the energy performance and sizing of 5th generation district heating and cooling networks,” en, Energy, vol. 275, p. 127 457, Jul. 2023, ISSN: 03605442. DOI: 10.1016/j.energy.2023.127457. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0360544223008514 (visited on09/07/2023).
P. Saini, P. Huang, F. fiedler, A. Volkova, and X. Zhang, “Techno-economic analysis of a 5th generation district heating system using thermo-hydraulic model: A multi-objective analysis for a case study in heating dominated climate,” en, Energy and Buildings, vol. 296, p. 113 347, Oct. 2023, ISSN: 03787788. DOI: 10.1016/j.enbuild.2023 .113347. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0378778823005777 (visited on 08/24/2023).
M. Wirtz, L. Kivilip, P. Remmen, and D. Müller, “5th Generation District Heating: A novel design approach based on mathematical optimization,” en, Applied Energy, vol. 260, p. 114 158, Feb. 2020, ISSN: 03062619. DOI: 10.1016/j.apenergy.2019.114158. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0306261919318458 (visited on 08/29/2023).
M. Wirtz, “nPro: A web-based planning tool for designing district energy systems and thermal networks,” en, Energy, vol. 268, p. 126 575, Apr. 2023, ISSN: 03605442. DOI: 10.1016/j.energy.2022.126575. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0360544222034624 (visited on 04/17/2023).
M. Wirtz, L. Kivilip, P. Remmen, and D. M¨ uller, “Quantifying Demand Balancing in Bidirectional Low Temperature Networks,” en, Energy and Buildings, vol. 224, p. 110 245, Oct. 2020, ISSN: 03787788. DOI: 10.1016/j.enbuild.2020.110245. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0378778820309889 (visited on 04/13/2023).
M. Abugabbara and J. Lindhe, “A Novel Method for Designing Fifth-Generation District Heating and Cooling Systems,” en, E3S Web of Conferences, vol. 246, J. Kurnitski and M. Thalfeldt, Eds., p. 09 001, 2021, ISSN: 2267-1242. DOI: 10.1051/e3sconf/202124609001. [Online]. Available: https://www.e3s-conferences.org/10.1051 /e3sconf/202124609001 (visited on 04/07/2023).
Districtlab, digital twin for energy grids, https://www.districtlab.eu/.
R. Baviere, M. Vallee, S. Crevon, N. Vasset, and N. Lamaison, “Districtlab-h: A new toolto optimize the design and operation of district heating and cooling networks,” in DHC Symposium 2023-The 18th International Symposium on District Heating and Cooling, 2023.
Y. Merlet, R. Baviere, and N. Vasset, “Optimal retrofit of district heating network to lower temperature levels,” en, Energy, vol. 282, p. 128 386, Nov. 2023, ISSN: 03605442. DOI: 10.1016/j.energy.2023.128386. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0360544223017802 (visited on 07/25/2023).
T. Kusuda and P. R. Achenbach, Earth temperature and thermal diffusivity at selected stations in the United States. National Bureau of Standards Gaithersburg, MD, USA, 1965, vol. 71. [21] P. Virtanen, R. Gommers, T. E. Oliphant, et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020. DOI: 10.1038/s41592-019-0686-2.
P. Virtanen, R. Gommers, T. E. Oliphant, et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020. DOI: 10.1038/s41592-019-0686-2.
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Charlie Prétot, Nicolas Lamaison
This work is licensed under a Creative Commons Attribution 4.0 International License.