A New Model for Describing the Glass to Metal Interaction in Forming

Authors

DOI:

https://doi.org/10.52825/glass-europe.v2i.976

Keywords:

Glass-Metal Contact, Sticking Temperatures, Wetting, Spreading, Interface Viscosity, Molecular Kinetic Model, Metal Oxides

Abstract

The interaction between molten glass and metallic molds plays a crucial role in industrial glass-forming. Glass-metal sticking is usually described in terms of material- and process-dependent “sticking temperatures”; however, these parameters tell little about the underlying physical processes such as adhesion, wetting and spreading. We show that the molecular-kinetic spreading model, originally developed for liquids at room temperature, is also valid for a droplet of molten glass on different substrate materials: Measured contact angles and spreading velocities yield plausible values for the molecular jump rate ks ≈ 1012 Hz and jump distance λ ≈ 3–6 Å. In addition, we argue that the real-world glass–metal contact is actually the contact between a liquid oxide (the glass melt) and a solid oxide (the metal’s oxide layer). The spatial dominance of oxygen ions might explain why sticking temperatures appear to be only weakly dependent on the contact material’s chemical composition. Both findings lead us to the conclusion that the current theory of glass-metal interaction should be revisited.

Downloads

Download data is not yet available.

References

[1] U. Roger, “Untersuchung der Wechselwirkungen der bei der Glasformgebung eingesetzten Schmiermittel mit dem Formenmaterial und der Glasoberfläche sowie deren Einfluss auf den Wärmetransport”, Institut für Keramik, Glas und Baustofftechnik at TU Bergakademie Freiberg, 2008.

[2] H. J. Oel and A. Gottschalk, “Die Klebetemperatur zwischen Glas und Metallen”, Glastechnische Berichte, vol. 39, no. 7, pp. 319–323, 1966.

[3] M. P. Alekseenko, “Cohesion and adhesion of hot glass”, Mashinostroenie, 1969.

[4] B. G. Abramovich and G. E. Kalashnikov, “Sticking temperature of glass and molds”, Glass and Ceramics, vol. 38, no. 7, pp. 349–350, 1981. DOI: https://doi.org/10.1007/bf00710086.

[5] P. Manns, W. Döll, and G. Kleer, “Glass in contact with mould materials for container production”, Glass Science and Technology, vol. 68, no. 12, pp. 389–399, 1995.

[6] D. Rieser, P. Manns, G. Spieß, and G. Kleer, “Investigations on sticking temperature and wear of mold materials and coatings”, Advances in Fusion and Processing of Glass III, vol. 141, pp. 281–289, 2006. DOI: https://doi.org/10.1002/9781118405949.ch27.

[7] D. Rieser, G. Spieß, and P. Manns, “Investigations on glass-to-mold sticking in the hot forming process”, Journal of Non-Crystalline Solids, vol. 354, no. 12–13, pp. 1393–1397, 2008. DOI: https://doi.org/10.1016/j.jnoncrysol.2007.02.095.

[8] D. K. Orzol, C. Roos, and L. Wondraczek, “Tribological investigations of the glass-to-metal contact during glass forming at an industrial scale”, International Journal of Applied Glass Science, vol. 12, no. 3, pp. 381–390, 2021. DOI: https://doi.org/10.1111/ijag.15918.

[9] P. Heilmann and D. A. Rigney, “An energy-based model of friction and its application to coated systems”, Wear, vol. 72, no. 2, pp. 195–217, 1981. DOI: https://doi.org/10.1016/0043-1648(81)90367-7.

[10] P. Heilmann and D. A. Rigney, “Reply to comments on An Energy-Based Model of Friction and its Application to Coated Systems”, Wear, vol. 80, no. 3, pp. 385–386, 1982. DOI: https://doi.org/10.1016/0043-1648(82)90265-4.

[11] D. A. Rigney and P. Heilmann, “Reply to a comment on An Energy-Based Model of Friction and its Application to Coated Systems”, Wear, vol. 97, no. 3, pp. 306–309, 1984. DOI: https://doi.org/10.1016/0043-1648(84)90157-1.

[12] P. -G. de Gennes, F. Brochard-Wyart, and D. Quéré, “Capillarity and Wetting Phenomena”. Springer New York, 2004. DOI: https://doi.org/10.1007/978-0-387-21656-0.

[13] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading”, Reviews of Modern Physics, vol. 81, no. 2, pp. 739–805, 2009. DOI: https://doi.org/10.1103/revmodphys.81.739.

[14] D. E. Packham, “Theories of fundamental adhesion”, in Handbook of Adhesion Technology. Springer Berlin Heidelberg, 2011, pp. 9–38. DOI: https://doi.org/10.1007/978-3-642-01169-6_2.

[15] M. J. Davis and S. H. Davis, “Droplet spreading: Theory and experiments”, Comptes Rendus Physique, vol. 14, no. 7, pp. 629–635, 2013. DOI: https://doi.org/10.1016/j.crhy.2013.06.011.

[16] A. Marchand, J. H. Weijs, J. H. Snoeijer, and B. Andreotti, “Why is surface tension a force parallel to the interface?”, American Journal of Physics, vol. 79, no. 10, pp. 999–1008, 2011. DOI: https://doi.org/10.1119/1.3619866.

[17] C. E. Mortimer and U. Müller, Chemie, 9th ed. Stuttgart: Georg Thieme Verlag, 2008, ISBN: 978-3-13-484309-5.

[18] T. D. Blake and J. M. Haynes, “Kinetics of liquid/liquid displacement”, Journal of Colloid and Interface Science, vol. 30, no. 3, pp. 421–423, 1969. DOI: https://doi.org/10.1016/0021-9797(69)90411-1.

[19] R. Sedev, “The molecular-kinetic approach to wetting dynamics: Achievements and limitations,” Advances in Colloid and Interface Science, vol. 222, pp. 661–669, 2015. DOI: https://doi.org/10.1016/j.cis.2014.09.008.

[20] A. Fluegel, “Glass viscosity calculation based on a global statistical modelling approach”, Glass Technology: European Journal of Glass Science and Technology Part A, vol. 48, no. 1, pp. 13–30, 2007.

[21] A. Fluegel, “Global model for calculating room-temperature glass density from the composition”, Journal of the American Ceramic Society, vol. 90, no. 8, pp. 2622–2625, 2007. DOI: https://doi.org/10.1111/j.1551-2916.2007.01751.x.

[22] A. Fluegel, D. A. Earl, A. K. Varshneya, and T. P. Seward III, “Density and thermal expansion calculation of silicate glass melts from 1000 °C to 1400 °C”, Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B, vol. 49, no. 5, pp. 245–257, 2008.

[23] A. Kucuk, A. G. Clare, and L. Jones, “An estimation of the surface tension for silicate glass melts at 1400 ◦C using statistical analysis”, Glass Technology, vol. 40, no. 5, pp. 149−153,1999.

[24] H. Salmang and H. Scholze, Keramik. Springer Berlin Heidelberg, 2007. DOI: https://doi.org/10.1007/978-3-540-49469-0.

[25] R. Halir and J. Flusser, “Numerically stable direct least squares fitting of ellipses”, in 6th International Conference in Central Europe on Computer Graphics and Visualization, World Society for Computer Graphics, 1998.

[26] M. C. Hendricks. “Rotated ellipses and their intersections with lines.” (2012), [Online]. Available: http://quickcalcbasic.com/ellipse%20line%20intersection.pdf (visited on 03/19/2024).

[27] J.- H. Veltmaat. “Software for the optical analysis of a glass droplet.” (2021), [Online]. Available: https://github.com/jhveltmaat/Drop-IT (visited on 03/18/2024).

[28] S. Lopez-Esteban, E. Saiz, J. S. Moya, and A. P. Tomsia, “Spreading of viscous liquids at high temperature: Silicate glasses on molybdenum”, Langmuir, vol. 21, no. 6, pp. 2438–2446, 2005. DOI: https://doi.org/10.1021/la0474621.

[29] U. Müller, Anorganische Strukturchemie (Studienbücher Chemie), 6th ed. Wiesbaden: Vieweg+Teubner, 2008. DOI: https://doi.org/10.1007/978-3-8348-9545-5.

Downloads

Published

2024-11-14

How to Cite

Roos, C., Veltmaat, J.-H., & Jacobs, P. (2024). A New Model for Describing the Glass to Metal Interaction in Forming. Glass Europe, 2, 137–149. https://doi.org/10.52825/glass-europe.v2i.976
Received 2023-12-18
Accepted 2024-07-30
Published 2024-11-14