Co2+-Stuffed Quartz Solid Solutions With Zero Thermal Expansion Synthesized by Sol-Gel Spray-Drying
DOI:
https://doi.org/10.52825/glass-europe.v1i.460Keywords:
Quartz Solid Solutions, Zero Thermal Expansion, Glass-Ceramic Powder, Spray-Drying, Sol-GelAbstract
Glassy nanobeads of nominal composition CoO·Al2O3·4SiO2, doped with some Li2O to foster their crystallization, were synthesized by spray-drying from a methanol-based solution. Heat treatments at 850 °C and 900 °C successfully induced the formation of quartz solid solution crystals, whose thermal expansion was found to be very close to zero between 25 °C and 625 °C (average linear coefficient of thermal expansion CTE = 0.3 x 10-6 K-1). Annealing at higher temperatures induced structural unstuffing of the solid solutions, accompanied by the parallel formation of CoAl2O4 spinel and by a color shift of the powders from purple to blue. Sol-gel spray-drying stands out as a highly versatile synthesis method that can harness the thermal expansion tunability of quartz solid solution phases within a (quasi) lithium-free compositional landscape.
Downloads
References
D. Krause, H. Bach, eds., Low Thermal expansion Glass Ceramics, Springer Berlin Heidelberg, 2005.
J. Deubener, M. Allix, M.J. Davis, A. Duran, T. Höche, T. Honma, T. Komatsu, S. Krüger, I. Mitra, R. Müller, S. Nakane, M.J. Pascual, J.W.P. Schmelzer, E.D. Zanotto, S. Zhou, Updated definition of glass-ceramics, Journal of Non-Crystalline Solids. 501 (2018) 3–10. https://doi.org/10.1016/j.jnoncrysol.2018.01.033.
J. Petzoldt, Metastabile Mischkristalle mit Quarzstruktur mit Oxidsystem Li2O-MgO-ZnO-Al2O3-SiO2, Glastechnische Berichte. 40 (1967) 385–395.
J. Petzoldt, Der Einbau von P2O5 in mestabile Mischkristalle mit Quarzstruktur des Grundsystems Li2O-MgO-ZnO-Al2O3-SiO2, Glastechnische Berichte. 41 (1968) 181–189.
G.H. Beall, Design and Properties of Glass-Ceramics, Annu. Rev. Mater. Sci. 22 (1992) 91–119. https://doi.org/10.1146/annurev.ms.22.080192.000515.
H. Bazzaoui, C. Genevois, E. Véron, M.J. Pitcher, M. Allix, A. Zandonà, Towards new zero-thermal-expansion materials: Li-free quartz solid solutions stuffed with transition metal cations, Journal of the European Ceramic Society. 43 (2023) 1639–1648. https://doi.org/10.1016/j.jeurceramsoc.2022.11.035.
F.J. Torres, U.R. Rodríguez-Mendoza, V. Lavín, E.R. de Sola, J. Alarcón, Evolution of the structural and optical properties from cobalt cordierite glass to glass-ceramic based on spinel crystalline phase materials, Journal of Non-Crystalline Solids. 353 (2007) 4093–4101. https://doi.org/10.1016/j.jnoncrysol.2007.06.014.
F. Jose Torres, J. Alarcón, Phase evolution by thermal treatment of equimolar cobalt–magnesium cordierite glass powders, Journal of the European Ceramic Society. 24 (2004) 681–691. https://doi.org/10.1016/S0955-2219(03)00265-6.
A. Douy, P. Canale, J. Coutures, Spray-dried homogeneous cordierite and MLAS glass-ceramic powders, Journal of the European Ceramic Society. 9 (1992) 373–380. https://doi.org/10.1016/0955-2219(92)90096-V.
I. Jaymes, A. Douy, Homogeneous Mullite-Forming Powders from Spray-Drying Aqueous Solutions, Journal of the American Ceramic Society. 75 (1992) 3154–3156. https://doi.org/10.1111/j.1151-2916.1992.tb04404.x.
P. Kortesuo, M. Ahola, M. Kangas, I. Kangasniemi, A. Yli-Urpo, J. Kiesvaara, In vitro evaluation of sol–gel processed spray dried silica gel microspheres as carrier in con-trolled drug delivery, International Journal of Pharmaceutics. 200 (2000) 223–229. https://doi.org/10.1016/S0378-5173(00)00393-8.
S.A. Saadaldin, A.S. Rizkalla, Synthesis and characterization of wollastonite glass–ceramics for dental implant applications, Dental Materials. 30 (2014) 364–371. https://doi.org/10.1016/j.dental.2013.12.007.
G. Molino, A. Bari, F. Baino, S. Fiorilli, C. Vitale-Brovarone, Electrophoretic deposition of spray-dried Sr-containing mesoporous bioactive glass spheres on glass–ceramic scaffolds for bone tissue regeneration, Journal of Materials Science. 52 (2017) 9103–9114. https://doi.org/10.1007/s10853-017-1026-5.
A. Zandona, A. Martínez Arias, M. Gutbrod, G. Helsch, A.P. Weber, J. Deubener, Spray-Dried TiO2(B)-Containing Photocatalytic Glass-Ceramic Nanobeads, Ad-vanced Functional Materials. 31 (2021) 2007760. https://doi.org/10.1002/adfm.202007760.
A. Zandona, G. Helsch, A. Martínez Arias, A.P. Weber, J. Deubener, Spray-dried sol-gel glass-ceramic powders based on the tunable thermal expansion of quartz and keatite solid solutions, Journal of the American Ceramic Society. 105 (2022) 207–216. https://doi.org/10.1111/jace.18057.
A. Zandona, G. Helsch, R. Al-Mukadam, J. Deubener, The effects of a Li2O excess on the crystallization sequence of lithium aluminosilicate glass powders, Journal of Non-Crystalline Solids. 561 (2021) 120748. https://doi.org/10.1016/j.jnoncrysol.2021.120748.
A. Zandona, G. Helsch, J. Deubener, Inversion of quartz solid solutions at cryogenic temperatures, Journal of the American Ceramic Society. 103 (2020) 6630–6638. https://doi.org/10.1111/jace.17393.
H. Xu, P.J. Heaney, G.H. Beall, Phase transitions induced by solid solution in stuffed derivatives of quartz: A powder synchrotron XRD study of the LiAlSiO4-SiO2 join, American Mineralogist. 85 (2000) 971–979. https://doi.org/10.2138/am-2000-0711.
A. Zandona, B. Rüdinger, J. Deubener, Mg-bearing quartz solid solutions as structural intermediates between low and high quartz, Journal of the American Ceramic Society. 104 (2021) 1146–1155. https://doi.org/10.1111/jace.17517.
A. Martínez Arias, A.P. Weber, Aerosol synthesis of porous SiO2-cobalt-catalyst with tailored pores and tunable metal particle size for Fischer-Tropsch synthesis (FTS), Journal of Aerosol Science. 131 (2019) 1–12. https://doi.org/10.1016/j.jaerosci.2019.02.003.
M.G. Ferreira da Silva, The color change of aluminosilicate gel-derived glasses doped with CoO, Materials Research Bulletin. 34 (1999) 2061–2068. https://doi.org/10.1016/S0025-5408(99)00217-2.
L.E. Orgel, An introduction to transition-metal chemistry: ligand-field theory, Butler and Turner Ltd, London, 1966.
C. Nelson, W.B. White, Transition metal ions in silicate melts. IV. Cobalt in sodium silicate and related glasses, Journal of Materials Research. 1 (1986) 130–138. https://doi.org/10.1557/JMR.1986.0130.
A. Zandonà, V. Castaing, A.I. Shames, G. Helsch, J. Deubener, A.I. Becerro, M. Allix, A. Goldstein, Oxidation and coordination states assumed by transition metal dopants in an invert ultrabasic silicate glass, Journal of Non-Crystalline Solids. 603 (2023) 122094. https://doi.org/10.1016/j.jnoncrysol.2022.122094.
M.O.J.Y. Hunault, L. Galoisy, G. Lelong, M. Newville, G. Calas, Effect of cation field strength on Co2+ speciation in alkali-borate glasses, Journal of Non-Crystalline Solids. 451 (2016) 101–110. https://doi.org/10.1016/j.jnoncrysol.2016.06.025.
A. Nakatsuka, Y. Ikeda, Y. Yamasaki, N. Nakayama, T. Mizota, Cation distribution and bond lengths in CoAl2O4 spinel, Solid State Communications. 128 (2003) 85–90. https://doi.org/10.1016/S0038-1098(03)00652-5.
T. Bates, Ligand field theory and absorption spectra of transition-metal ions in glasses, Modern Aspects of the Vitreous State. 2 (1962) 195–254.
H. Xu, P.J. Heaney, A. Navrotsky, Thermal expansion and structural transformations of stuffed derivatives of quartz along the LiAlSiO4–SiO2 join: a variable-temperature powder synchrotron XRD study, Physics and Chemistry of Minerals. 28 (2001) 302–312. https://doi.org/10.1007/s002690100165.
G. Helsch, J. Deubener, M. Rampf, M. Dittmer, C. Ritzberger, Crystallization and quartz inversion temperature of sol-gel derived LAS solid solutions, Journal of Non-Crystalline Solids. 492 (2018) 130–139. https://doi.org/10.1016/j.jnoncrysol.2018.04.031.
M.A. Carpenter, E.K.H. Salje, A. Graeme-Barber, B. Wruck, M.T. Dove, K.S. Knight, Calibration of excess thermodynamic properties and elastic constant variations asso-ciated with the alpha <-->beta phase transition in quartz, American Mineralogist. 83 (1998) 2–22. https://doi.org/10.2138/am-1998-1-201.
S. Ray, G.M. Muchow, High-Quartz Solid Solution Phases from Thermally Crystal-lized Glasses of Compositions (Li2O,MgO).Al2O3.nSiO2, Journal of the American Ceramic Society. 51 (1968) 678–682. https://doi.org/10.1111/j.1151-2916.1968.tb15927.x.
H.G.F. Winkler, Synthese und Kristallstruktur des Eukryptits, LiAlSiO4, Acta Crystallographica. 1 (1948) 27–34. https://doi.org/10.1107/S0365110X48000065.
C.-T. Li, The crystal structure of LiAlSi2O6 III (high-quartz solid solution), Zeitschrift Für Kristallographie - Crystalline Materials. 127 (1968) 327–348. https://doi.org/doi:10.1524/zkri.1968.127.16.327.
H. Xu, P.J. Heaney, P. Yu, H. Xu, Synthesis and structure of a stuffed derivative of α-quartz, Mg0.5AlSiO4, American Mineralogist. 100 (2015) 2191–2198. https://doi.org/10.2138/am-2015-5303.
G. Müller, M. Hoffmann, R. Neeff, Hydrogen substitution in lithium-aluminosilicates, Journal of Materials Science. 23 (1988) 1779–1785. https://doi.org/10.1007/BF01115722.
Roye et al., ICDD 00-032-1455, ICDD Grant-In-Aid. (1981).
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Beatriz Paiva Da Fonseca, Alessio Zandonà, Gundula Helsch, Joachim Deubener
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-09-11
Published 2023-09-28
Funding data
-
Deutsche Forschungsgemeinschaft
Grant numbers DE 598/37-1