Effect of Cation Exchange on the Kinetics of Thermal Amorphization of Zeolite X
DOI:
https://doi.org/10.52825/glass-europe.v2i.2538Keywords:
Thermal Amorphization, Amorphization Kinetics, Zeolite, Ion-ExchangeAbstract
Thermal collapse of crystalline zeolites offers a way to obtain glasses in chemical regimes that are inaccessible by classical melt quenching. Thereby, the charge-balancing cations located within the zeolitic framework play an important role in determining structural stability and the dynamics of collapse. Here, we use ion exchange in aqueous solution to create a consistent variety of alkali, alkaline earth and transition-metal containing derivatives of the faujasitic Zeolite X. We subsequently explore the effect of cation species on the thermal stability and the collapse dynamics, revealing a systematic decrease of zeolite stability with increasing cation electronegativity, but a more complex correlation for the apparent activation energy of the collapse reaction.
Downloads
References
[1] G. K. Li et al., “Temperature-regulated guest admission and release in microporous materials,” Nature Communications, vol. 8, pp. 1–9, 2017, doi: https://doi.org/10.1038/ncomms15777.
[2] K. Narang, K. Fodor, A. Kaiser, and F. Akhtar, “Optimized cesium and potassium ion-exchanged zeolites A and X granules for biogas upgrading,” RSC Advances, vol. 8, no. 65, pp. 37277–37285, 2018, doi: https://doi.org/10.1039/c8ra08004f.
[3] J. E. Readman, C. P. Grey, M. Ziliox, L. M. Bull, and A. Samoson, “Comparison of the 17O NMR spectra of zeolites LTA and LSX,” Solid State Nuclear Magnetic Resonance, vol. 26, no. 3-4 SPEC. ISS., pp. 153–159, 2004, doi: https://doi.org/10.1016/j.ssnmr.2004.03.004.
[4] A. M. Beale, G. Sankar, D. G. Nicholson, and W. Van Beek, “In situ study of the crystallisation of nano-sized zinc and cobalt aluminate spinel catalysts from ion-exchanged zeolite precursors,” Physica Scripta T, vol. T115, pp. 678–680, 2005, doi: https://doi.org/10.1238/Physica.Topical.115a00678.
[5] L. M. Colyer, G. N. Greaves, S. W. Carr, and K. K. Fox, “Collapse and recrystallization processes in zinc-exchanged zeolite-A: A combined x-ray diffraction, XAFS, and NMR study,” Journal of Physical Chemistry B, vol. 101, no. 48, pp. 10105–10114, 1997, doi: https://doi.org/10.1021/jp9718008.
[6] T. Palenta, S. Fuhrmann, G. N. Greaves, W. Schwieger, and L. Wondraczek, “Thermal collapse and hierarchy of polymorphs in a faujasite-type zeolite and its analogous melt-quenched glass,” Journal of Chemical Physics, vol. 142, no. 8, 2015, doi: https://doi.org/10.1063/1.4913240.
[7] S. Ronchetti et al., “Study of the thermal transformations of Co- and Fe-exchanged zeolites A and X by ‘in situ’ XRD under reducing atmosphere,” Materials Research Bulletin, vol. 45, no. 6, pp. 744–750, 2010, doi: https://doi.org/10.1016/j.materresbull.2010.02.006.
[8] S. Chen, J. Popovich, N. Iannuzo, S. E. Haydel, and D. K. Seo, “Silver-Ion-Exchanged Nanostructured Zeolite X as Antibacterial Agent with Superior Ion Release Kinetics and Efficacy against Methicillin-Resistant Staphylococcus aureus,” ACS Applied Materials and Interfaces, vol. 9, no. 45, pp. 39271–39282, 2017, doi: https://doi.org/10.1021/acsami.7b15001.
[9] L. Wondraczek et al., “Thermal collapse of SAPO-34 molecular sieve towards a perfect glass,” Journal of Non-Crystalline Solids, vol. 360, no. 1, pp. 36–40, 2013, doi: https://doi.org/10.1016/j.jnoncrysol.2012.10.001.
[10] X. Li et al., “Stress-tunable abilities of glass forming and mechanical amorphization,” Acta Materialia, vol. 277, no. June, p. 120218, 2024, doi: https://doi.org/10.1016/j.actamat.2024.120218.
[11] A. Navrotsky, “Ordered, disordered, collapsed,” Nature, vol. 2, pp. 571–572, 2003.
[12] G. N. Greaves et al., “The rheology of collapsing zeolites amorphized by temperature and pressure,” Nature Materials, vol. 2, no. 9, pp. 622–629, 2003, doi: https://doi.org/10.1038/nmat963.
[13] G. N. Greaves, F. Meneau, F. Kargl, D. Ward, P. Holliman, and F. Albergamo, “Zeolite collapse and polyamorphism,” Journal of Physics: Condensed Matter, vol. 19, no. 41, p. 415102, 2007, doi: https://doi.org/10.1088/0953-8984/19/41/415102.
[14] G. N. Greaves, F. Meneau, and G. Sankar, “SAXS/WAXS and XAFS studies of zeolite stability,” Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol. 199, pp. 98–105, 2003, doi: https://doi.org/10.1016/S0168-583X(02)01599-9.
[15] L. Wondraczek et al., “Kinetics of Decelerated Melting,” Advanced Science, vol. 5, no. 5, pp. 1–8, 2018, doi: https://doi.org/10.1002/advs.201700850.
[16] A. Nemati, V. Azar, A. Duval, and L. Wondraczek, “Mixed-alkali effect in the thermal collapse and melting kinetics of Zeolite X,” no. September, pp. 1–11, 2024, doi: https://doi.org/10.1111/jace.20185.
[17] C. Kosanović, A. C ̌iz ̌mek, B. Subotić, I. S ̌mit, M. Stubic ̌ar, and A. Tonejc, “Mechano-chemistry of zeolites. Part 4: Influence of cations on the rate of amorphization of zeolite A by ball milling,” Zeolites, vol. 15, no. 7, pp. 632–636, 1995, doi: https://doi.org/10.1016/0144-2449(95)00036-6.
[18] U. D. Joshi et al., “Influence of the size of extraframework monovalent cations in X-type zeolite on their thermal behavior,” Thermochimica Acta, vol. 387, no. 2, pp. 121–130, 2002, doi: https://doi.org/10.1016/S0040-6031(01)00840-1.
[19] C. Kosanović et al., “Mechanochemistry of zeolites: Part 1. Amorphization of zeolites A and X and synthetic mordenite by ball milling,” Zeolites, vol. 13, no. 4, pp. 261–268, 1993, doi: https://doi.org/10.1016/0144-2449(93)90004-M.
[20] L. A. Freeman, J. E. Walley, and R. J. Gilliard, “Synthesis and reactivity of low-oxidation-state alkaline earth metal complexes,” Nature Synthesis, vol. 1, no. 6, pp. 439–448, 2022, doi: https://doi.org/10.1038/s44160-022-00077-6.
[21] H. J. Lee, Y. M. Kim, O. S. Kweon, and I. J. Kim, “Structural and morphological trans-formation of NaX zeolite crystals at high temperature,” Journal of the European Ceramic Society, vol. 27, no. 2–3, pp. 561–564, 2007, doi: https://doi.org/10.1016/j.jeurceramsoc.2006.04.156.
[22] A. N. V. Azar, A. Duval, F. Langenhorst, and L. Wondraczek, “Amorphization-controlled ion release of cobalt-exchanged zeolite X,” Journal of the American Ceramic Society, vol. 107, no. 10, pp. 6607–6618, 2024, doi: https://doi.org/10.1111/jace.19948.
[23] H. Qu, Y. Ma, B. Li, and L. Wang, “Hierarchical zeolites: synthesis, structural control, and catalytic applications,” Emergent Materials, vol. 3, no. 3, pp. 225–245, 2020, doi: https://doi.org/10.1007/s42247-020-00088-z.
[24] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Cryst A, vol. 32, no. 5, pp. 751–767, Sep. 1976, doi: https://doi.org/10.1107/S0567739476001551.
[25] C. R. Technol, “Modified by Successive Ion Exchange,” 1993.
[26] Y. Yu, G. Xiong, C. Li, and F. S. Xiao, “Characterization of aluminosilicate zeolites by UV Raman spectroscopy,” Microporous and Mesoporous Materials, vol. 46, no. 1, pp. 23–34, 2001, doi: https://doi.org/10.1016/S1387-1811(01)00271-2.
[27] H. Sanaeepur, A. Kargari, B. Nasernejad, A. Ebadi Amooghin, and M. Omidkhah, “A novel Co2+ exchanged zeolite Y/cellulose acetate mixed matrix membrane for CO2/N2 separation,” Journal of the Taiwan Institute of Chemical Engineers, vol. 60, pp. 403–413, 2016, doi: https://doi.org/10.1016/j.jtice.2015.10.042.
[28] A. A. Verberckmoes, B. M. Weckhuysen, J. Pelgrims, and R. A. Schoonheydt, “Diffuse reflectance spectroscopy of dehydrated cobalt-exchanged faujasite-type zeolites: A new method for Co2+ siting,” Journal of Physical Chemistry, vol. 99, no. 41, pp. 15222–15228, 1995, doi: https://doi.org/10.1021/j100041a043.
[29] M. Christy et al., “Lithium insertion behavior of nanoscopic Co3O4 prepared with avian Egg membrane as a template,” Bulletin of the Korean Chemical Society, vol. 32, no. 4, pp. 1204–1208, 2011, doi: https://doi.org/10.5012/bkcs.2011.32.4.1204.
[30] M. Król, W. Mozgawa, and W. Jastrzębski, “Theoretical and experimental study of ion-exchange process on zeolites from 5-1 structural group,” Journal of Porous Materials, vol. 23, no. 1, pp. 1–9, 2016, doi: https://doi.org/10.1007/s10934-015-0050-6.
[31] R. Dimitrijevic, V. Dondur, P. Vulic, S. Markovic, and S. Macura, “Structural characterization of pure Na-nephelines synthesized by zeolite conversion route,” Journal of Physics and Chemistry of Solids, vol. 65, no. 10, pp. 1623–1633, 2004, doi: https://doi.org/10.1016/j.jpcs.2004.03.005.
[32] B. X. Gu, L. M. Wang, and R. C. Ewing, “Effect of amorphization on the Cs ion exchange and retention capacity of zeolite-NaY,” Journal of Nuclear Materials, vol. 278, no. 1, pp. 64–72, 2000, doi: https://doi.org/10.1016/S0022-3115(99)00224-X.
[33] H. E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis,” Analytical Chemistry, vol. 29, no. 11, pp. 1702–1706, 1957, doi: https://doi.org/10.1021/ac60131a045.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ayda Nemati Vesali Azar, Lothar Wondraczek
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-12-03
Published 2024-12-17
Funding data
-
Deutsche Forschungsgemeinschaft
Grant numbers EXC 2051, project ID 390713860