The Structure of Glassy and Liquid Sulfur Revisited
DOI:
https://doi.org/10.52825/glass-europe.v3i.2532Keywords:
Sulfur, X-Ray Diffraction, Pair Distribution Function, Lambda Transition, Glass StructureAbstract
High energy x-ray experiments have been performed on liquid and glassy sulfur over a wide temperature range. Heating the elastic quenched glass above -9 ºC and supercooling liquid sulfur below 51 ºC both resulted in crystallization to monoclinic sulfur. The average coordination number of the first shell in glassy sulfur determined from the pair distribution function is found to be 1.90±0.05. This result is in good agreement with previous neutron and x-ray pair distribution function studies, and lends support to the recent proposal that there are a significant number of short chains in the low temperature liquid upon melting. Also, a non-negligible coordination number of 0.20±0.04 is found in the interstitial region between the first and second shells in glassy sulfur, similar to that found in the liquid. An increase in the third peak in the glassy pair distribution function at 4.47 Å associated with S8-rings indicates the percentage is higher in the quenched glass compared to the stable liquid. This casts doubt on previous estimations of the percentage of S8-rings present upon melting.
Downloads
References
[1] Rettig, S.J. and J. Trotter, Refinement of the structure of orthorhombic sulfur. Acta Crystallographica C, 1987. 43. DOI: https://doi.org/10.1107/S0108270187088152
[2] Sands, D.E., The Crystal Structure of Monoclinic (β) Sulfur. Journal of the American Chemical Society, 1965. 87(6): p. 1395-1396. DOI: https://doi.org/10.1021/ja01084a052
[3] Templeton, L.K., D.H. Templeton, and A. Zalkin, Crystal structure of monoclinic sulfur. Inorganic Chemistry, 1976. 15(8): p. 1999-2001. DOI: https://doi.org/10.1021/ic50162a059
[4] Andrikopoulos, K.S., et al., The glassy and supercooled state of elemental sulfur: vibrational modes, structure metastability, and polymer content. J Chem Phys, 2013. 139(12): p. 124501. DOI: https://doi.org/10.1063/1.4821592
[5] Kalampounias, A.G., K.S. Andrikopoulos, and S.N. Yannopoulos, Probing the sulfur polymerization transitionin situwith Raman spectroscopy. The Journal of Chemical Physics, 2003. 118(18): p. 8460-8467. DOI: https://doi.org/10.1063/1.1566938
[6] Steudel, R., Liquid Sulfur, in Elemental Sulfur and Sulfur-Rich Compounds I. 2003. p. 81-116. DOI: https://doi.org/10.1007/b12111
[7] Andrikopoulos, K.S., A.G. Kalampounias, and S.N. Yannopoulos, On the extent of polymerization of liquid sulfur at very high temperatures. J Chem Phys, 2006. 124(14): p. 146101. DOI: https://doi.org/10.1063/1.2185097
[8] Sauer, G.E. and L.B. Borst, Lambda Transition in Liquid Sulfur. Science, 1967. 158. DOI: https://doi.org/10.1126/science.158.3808.1567
[9] Scopigno, T., et al., Origin of the lambda transition in liquid sulfur. Phys Rev Lett, 2007. 99(2): p. 025701. DOI: https://doi.org/10.1103/PhysRevLett.99.025701
[10] Kozhevnikov, V.F., et al., Physical properties of sulfur near the polymerization transition. J Chem Phys, 2004. 121(15): p. 7379-86. DOI: https://doi.org/10.1063/1.1794031
[11] Meyer, B., Elemental Sulfur. Chemical Reviews, 1976. 76(3). DOI: https://doi.org/10.1021/cr60301a003
[12] Schenk, J. and J.A. Prins, Plastic Sulphur. Nature, 1953. 172(4386): p. 957-957. DOI: https://doi.org/10.1038/172957a0
[13] Tobolsky, A.V., et al., The Glass Transition Temperature of Polymeric Sulphur. Polymer, 1963. 4. DOI: https://doi.org/10.1016/0032-3861(63)90054-5
[14] Tobolsky, A.V. and A. Eisenberg, A general treatment of equilibrium polymerization. Journal of the American Chemical Society, 1960. 82(2). DOI: https://doi.org/10.1021/ja01487a009
[15] Flores-Ruiz, H. and M. Micoulaut, Crucial role of S8-rings in structural, relaxation, vibrational, and electronic properties of liquid sulfur close to the λ transition. The Journal of Chemical Physics, 2022. 157(5): p. 054507. DOI: https://doi.org/10.1063/5.0090953
[16] Bellissent, R., et al., Liquid sulfur: Local-order evidence of a polymerization transition. Phys Rev B Condens Matter, 1990. 41(4): p. 2135-2138. DOI: https://doi.org/10.1103/physrevb.41.2135
[17] Stoltz, M., et al., The structural properties of liquid and quenched sulphur II. Journal of Physics: Condensed Matter, 1994. 6. DOI: https://doi.org/10.1088/0953-8984/6/20/002
[18] Winter, R., et al., The structural properties of liquid sulphur. Journal of Physics: Condensed Matter, 1990. 2. DOI: https://doi.org/10.1088/0953-8984/2/42/019
[19] Zhang, L., et al., Chain breakage in the supercooled liquid-liquid transition and re-entry of the lambda-transition in sulfur. Scientific Reports, 2018. 8. DOI: https://doi.org/10.1038/s41598-018-22775-y
[20] Benmore, C.J. and G. Sivaraman, Evidence of short chains in liquid sulfur. The Journal of Chemical Physics, 2024. 161(15): p. 154502. DOI: https://doi.org/10.1063/5.0227014
[21] Stillinger, F.H., T.A. Weber, and R.A. LaViolette, Chemical Reactions in Liquids:Molecular dynamics simulation for sulfur. J Chem Phys, 1986. 85: p. 6460. DOI: https://doi.org/10.1063/1.451426
[22] Yang, M., E. Trizio, and M. Parrinello, Structure and polymerization of liquid sulfur across the λ-transition. Chemical Science, 2024. DOI: https://doi.org/10.1039/D3SC06282A
[23] Hammersley, A.P., et al., Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 1996. 14: p. 235-248. DOI: https://doi.org/10.1080/08957959608201408
[24] Qiu, X., J.W. Thompson, and S.J.L. Billinge, PDFgetX2: a GUI-driven program to obtain pair distribution function from X-ray powder diffraction data. Journal of Applied Crystallography, 2004. 37: p. 678. DOI: https://doi.org/10.1107/S0021889804011744
[25] Skinner, L.B., C.J. Benmore, and J.B. Parise, Area detector corrections for high quality synchrotron X-ray structure factor measurements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012. 662(1): p. 61-70. DOI: https://doi.org/10.1016/j.nima.2011.09.031
[26] Gallington, L.C., et al. Review of Current Software for Analyzing Total X-ray Scattering Data from Liquids. Quantum Beam Science, 2023. 7, 20. DOI: https://doi.org/10.3390/qubs7020020.
[27] Espeau, P. and R. Céolin, Density of molten sulfur in the 334–508K range. Thermochimica Acta, 2007. 459(1): p. 127-129. DOI: https://doi.org/10.1016/j.tca.2007.03.016
[28] Zheng, K.M. and S.C. Greer, The density of liquid sulfur near the polymerization temperature. The Journal of Chemical Physics, 1992. 96(3): p. 2175-2182. DOI: https://doi.org/10.1063/1.462069
[29] Fehér, F. and E. Hellwig, Beiträge zur Chemie des Schwefels, 45. Zur Kenntnis des flüssigen Schwefels. (Dichte, Ausdehnungskoeffizient und Kompressibilität). Zeitschrift für anorganische und allgemeine Chemie, 1958. 294(1-2): p. 63-70. DOI: https://doi.org/10.1002/zaac.19582940106
[30] Benmore, C.J., 10.14 - X-ray and neutron diffraction from glasses and liquids, in Comprehensive Inorganic Chemistry III (Third Edition), J. Reedijk and K.R. Poeppelmeier, Editors. 2023, Elsevier: Oxford. p. 384-424. DOI: https://doi.org/10.1016/B978-0-12-823144-9.00036-4
[31] Soper, A.K., Network structure and concentration fluctuations in a series of elemental, binary, and tertiary liquids and glasses. J Phys Condens Matter, 2010. 22(40): p. 404210. DOI: https://doi.org/10.1088/0953-8984/22/40/404210
[32] Krogh-Moe, J., A method for converting experimental X-ray intensities to an absolute scale. Acta Crystallographica, 1956. 9(11): p. 951-953
[33] Norman, N., The Fourier transform method for normalizing intensities. Acta Crystallographica, 1957. 10(5): p. 370-373
[34] Steudel, R., Properties of Sulfur-Sulfur Bonds. Angewandte Chemie International Edition in English, 1975. 14(10): p. 655-664. DOI: https://doi.org/10.1002/anie.197506551
[35] David, A.K. and T.D. Martin, Local structures of amorphous and crystalline phases of silica, SiO2, by neutron total scattering. Journal of Physics: Condensed Matter, 1999. 11(47): p. 9263. DOI: https://doi.org/10.1088/0953-8984/11/47/311
[36] Wheeler, J.C., S.J. Kennedy, and P. Pfeuty, Equilibrium Polymerization as a Critical Phenomenon. Physical Review Letters, 1980. 45(22): p. 1748-1752. DOI: https://doi.org/10.1103/PhysRevLett.45.1748
[37] Koh, J.C. and W. Klement, Polymer Content of Sulfur Quenched Rapidly from the Melt. The Journal of Physical Chemistry, 1970. 74(24). DOI: https://doi.org/10.1021/j100718a017
[38] Ballone, P. and R.O. Jones, Density functional and Monte Carlo studies of sulfur. II. Equilibrium polymerization of the liquid phase. The Journal of Chemical Physics, 2003. 119(16): p. 8704-8715. DOI: https://doi.org/10.1063/1.1611475
[39] Steudel, R. and B. Eckert, Comment on "Probing the sulfur polymerization transition in situ with Raman spectroscopy" [J. Chem. Phys. 118, 8460 (2003)]. J Chem Phys, 2004. 121(13): p. 6573-4; author reply 6575-7. DOI: https://doi.org/10.1063/1.1786573
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Chris Benmore
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-12-14
Published 2025-01-22
Funding data
-
Basic Energy Sciences
Grant numbers DE-AC02-06CH11357