Effects of Al Substitution for Fe in Na₅FeSi₄O₁₂ (5.1.8) Glasses: Structure and Crystallization
DOI:
https://doi.org/10.52825/glass-europe.v2i.2341Keywords:
Na₅FeSi₄O₁₂, Na₅MSi₄O₁₂, Crystallized Glass, Glass Structure, Raman Spectroscopy, XANESAbstract
In this study, the effects of substituting Al for Fe in 5Na2O∙(Al2O3)x∙(Fe2O3)1-x∙8SiO2 glass, x=0 to 1, and Na5AlxFe1-xSi4O12 (5.1.8) crystal, were investigated using thermal analysis, Fe K-edge X-ray absorption, X-ray diffraction, Raman spectroscopy, and Electron Probe Microanalysis. In both glass and crystallized glass, nearly all the Fe was tetrahedrally coordinated Fe3+, as expected from the high concentration of Na2O. The substitution of Al for Fe in the glasses caused the glass transition temperature to increase as polymerization increased, as evidenced by Raman, likely due to both field strength differences of Al vs Fe and a small amount of Fe2+ network modifier present with Fe. After heat treatment at 700 °C for 24 hours, the glasses had crystallized, forming Na2SiO3 and NaAlSiO4 in compositions with high Al concentrations and the 5.1.8 crystal in compositions with high Fe concentrations. Through electron microprobe, it was determined that <0.04 formula unit Al incorporated into the 5.1.8 crystal, i.e. Na5Fe0.96Al0.04Si4O12. The 5.1.8 crystal only formed when Fe concentration was higher than Al in the starting glass.
Downloads
References
[1] M. Ahmadzadeh, J. Marcial, and J. McCloy, “Crystallization of iron‐containing sodium aluminosilicate glasses in the NaAlSiO4 ‐NaFeSiO4 join,” J. Geophys. Res. Solid Earth, vol. 122, no. 4, pp. 2504–2524, Apr. 2017, doi: https://doi.org/10.1002/2016JB013661.
[2] A. Goel, J. S. McCloy, R. Pokorny, and A. A. Kruger, “Challenges with vitrification of Hanford High-Level Waste (HLW) to borosilicate glass – An overview,” J. Non-Cryst. Solids X, vol. 4, p. 100033, Dec. 2019, doi: https://doi.org/10.1016/j.nocx.2019.100033.
[3] J. Marcial, B. J. Riley, A. A. Kruger, C. E. Lonergan, and J. D. Vienna, “Hanford low-activity waste vitrification: A review,” J. Hazard. Mater., vol. 461, p. 132437, Jan. 2024, doi: https://doi.org/10.1016/j.jhazmat.2023.132437.
[4] B. Cochain, D. R. Neuville, G. S. Henderson, C. A. McCammon, O. Pinet, and P. Richet, “Effects of the Iron Content and Redox State on the Structure of Sodium Borosilicate Glasses: A Raman, Mössbauer and Boron K‐Edge XANES Spectroscopy Study,” J. Am. Ceram. Soc., vol. 95, no. 3, pp. 962–971, Mar. 2012, doi: https://doi.org/10.1111/j.1551-2916.2011.05020.x.
[5] C. L. Pearce, K. M. Rosso, R. A. D. Pattrick, and A. R. Felmy, “Impact of iron redox chemistry on nuclear waste disposal,” in Redox-reactive Minerals: Properties, Reactions and Applications in Clean Technologies, 1st ed., I. A. M. Ahmed, Ed., Mineralogical Society of Great Britain & Ireland, 2007, pp. 229–272. doi: https://doi.org/10.1180/EMU-notes.17.7.
[6] K. A. Hudson-Edwards, Redox-reactive Minerals: Properties, Reactions and Applications in Clean Technologies, 1st ed. Mineralogical Society of Great Britain & Ireland, 2007. doi: https://doi.org/10.1180/EMU-notes.17.
[7] N. L. Bowen, J. Schairer, and H. W. V. Willems, “The ternary system; Na2SiO3 -Fe2O3 -SiO2,” American Journal of Science, vol. 20, pp. 405–455, 1930.
[8] M. Ahmadzadeh, T. A. Olds, A. Scrimshire, P. A. Bingham, and J. S. McCloy, “Structure and properties of Na5FeSi4O12 crystallized from 5Na2O–Fe2O3–8SiO2 glass,” Acta Crystallogr. Sect. C Struct. Chem., vol. 74, no. 12, pp. 1595–1602, Dec. 2018, doi: https://doi.org/10.1107/S2053229618014353.
[9] B. Maksimov, Y. A. Kharitonov, and N. Belov, "Crystal structure of the Na-Y metasilicate Na5YSi4O12," Sov. Physics—Doklady, vol. 19, p. 763, 1974.
[10] A. Sivakumaran, A. J. Samson, and V. Thangadurai, “Progress in Sodium Silicates for All‐Solid‐State Sodium Batteries—a Review,” Energy Technol., vol. 11, no. 4, p. 2201323, Apr. 2023, doi: https://doi.org/10.1002/ente.202201323.
[11] G. Sun et al., “Electrochemically induced crystalline-to-amorphization transformation in sodium samarium silicate solid electrolyte for long-lasting sodium metal batteries,” Nat. Commun., vol. 14, no. 1, p. 6501, Oct. 2023, doi: https://doi.org/10.1038/s41467-023-42308-0.
[12] A. Michalak, S. Behara, and A. R. M, “Reinvestigation of Na5GdSi4O12 : A Potentially Better Solid Electrolyte than Sodium β Alumina for Solid-State Sodium Batteries,” ACS Appl. Mater. Interfaces, vol. 16, no. 6, pp. 7112–7118, Feb. 2024, doi: https://doi.org/10.1021/acsami.3c16153.
[13] R. D. Shannon, B. E. Taylor, T. E. Gier, H. Y. Chen, and T. Berzins, “Ionic conductivity in sodium yttrium silicon oxide (Na5YSi4O12)-type silicates,” Inorg. Chem., vol. 17, pp. 958–964, 1978.
[14] R. D. Shannon, H.-Y. Chen, and T. Berzins, “Ionic Conductivity in Na5GdSi4O12,” Mat Res Bull, vol. 12, pp. 969–973, 1977.
[15] D. Bailey and J. Schairer, “Crystallization of the rock-forming silicates in the system Na2O-Fe2O3-Al2O3-SiO2 at 1 atmosphere,” 1962-1963 Year Book - Carnegie Institution of Washington, vol. 62, Washington, D.C. : Carnegie Institution of Washington, vol. 62, pp. 124–131, 1963.
[16] D. K. Bailey and J. F. Schairer, “The System Na2O-Fe2O3-Al2O3-SiO2 at 1 Atmosphere, and the Petrogenesis of Alkaline Rocks,” J. Petrol., vol. 7, no. 1, pp. 114–170, Feb. 1966, doi: https://doi.org/10.1093/petrology/7.1.114.
[17] M. Ahmadzadeh et al., “Structure of NaFeSiO4, NaFeSi2O6, and NaFeSi3O8 glasses and glass-ceramics,” Am. Mineral., vol. 105, no. 9, pp. 1375–1384, Sep. 2020, doi: https://doi.org/10.2138/am-2020-7285.
[18] J. S. McCloy, M. J. Schweiger, C. P. Rodriguez, and J. D. Vienna, “Nepheline Crystallization in Nuclear Waste Glasses: Progress Toward Acceptance of High‐Alumina Formulations,” Int. J. Appl. Glass Sci., vol. 2, no. 3, pp. 201–214, Sep. 2011, doi: https://doi.org/10.1111/j.2041-1294.2011.00055.x.
[19] P. Hrma, “Crystallization during processing of nuclear waste glass,” J. Non-Cryst. Solids, vol. 356, no. 52–54, pp. 3019–3025, Dec. 2010, doi: https://doi.org/10.1016/j.jnoncrysol.2010.03.039.
[20] F. Menges, Spectragryph - optical spectroscopy software. (2022).
[21] F. Baudelet et al., “ODE: a new beam line for high-pressure XAS and XMCD studies at SOLEIL,” High Press. Res., vol. 31, no. 1, pp. 136–139, Mar. 2011, doi: https://doi.org/10.1080/08957959.2010.532794.
[22] M. Newville, “Larch: An Analysis Package for XAFS and Related Spectroscopies,” J. Phys. Conf. Ser., vol. 430, p. 012007, Apr. 2013, doi: https://doi.org/10.1088/1742-6596/430/1/012007.
[23] M. Wilke, F. Farges, P.-E. Petit, G. E. Brown, and F. Martin, “Oxidation state and coordination of Fe in minerals: An Fe K- XANES spectroscopic study,” Am. Mineral., vol. 86, no. 5–6, pp. 714–730, May 2001, doi: https://doi.org/10.2138/am-2001-5-612.
[24] M. Wilke, G. M. Partzsch, R. Bernhardt, and D. Lattard, “Determination of the iron oxidation state in basaltic glasses using XANES at the K-edge,” Chem. Geol., vol. 213, no. 1–3, pp. 71–87, Dec. 2004, doi: https://doi.org/10.1016/j.chemgeo.2004.08.034.
[25] B. H. Toby and R. B. Von Dreele, “GSAS-II : the genesis of a modern open-source all purpose crystallography software package,” J. Appl. Crystallogr., vol. 46, no. 2, pp. 544–549, Apr. 2013, doi: https://doi.org/10.1107/S0021889813003531.
[26] J. J. Donovan, Probe for EPMA v. 10.4.5, User’s Guide and Reference, Xtreme Edition. 2014.
[27] R. Pokorný et al., “Transient melt formation and its effect on conversion phenomena during nuclear waste vitrification – HT‐ESEM analysis,” J. Am. Ceram. Soc., vol. 107, no. 3, pp. 1691–1705, Mar. 2024, doi: https://doi.org/10.1111/jace.19361.
[28] D. Kelly, “Analysis of geological materials by low dilution fusion at the Peter Hooper Geoanalytical Lab (Washington State University),” Dec. 2018, Accessed: Jul. 23, 2024. [Online]. Available: https://hdl.handle.net/2376/101916
[29] Z. Jia, C. Liu, C. Niu, K. Li, and K. Xu, “Volatilization of sodium and boron from nuclear waste glass and associated effects on glass structure and thermal stability,” J. Nucl. Mater., vol. 587, p. 154712, Dec. 2023, doi: https://doi.org/10.1016/j.jnucmat.2023.154712.
[30] J. S. McCloy, N. Smith-Gray, J. M. Bussey, N. Stone-Weiss, and R. E. Youngman, “Fluorine in Complex Alumino-Boro-Silicate Glasses: Insight into Chemical Environment and Structure,” Inorg. Chem., vol. 63, no. 10, pp. 4669–4680, Mar. 2024, doi: https://doi.org/10.1021/acs.inorgchem.3c04281.
[31] M. Edén, “Update on 27Al NMR studies of aluminosilicate glasses,” in Annual Reports on NMR Spectroscopy, vol. 101, Elsevier, 2020, pp. 285–410. doi: https://doi.org/10.1016/bs.arnmr.2020.07.002.
[32] B. Hehlen, E. Courtens, A. Yamanaka, and K. Inoue, “Nature of the Boson peak of silica glasses from hyper-Raman scattering,” J. Non-Cryst. Solids, vol. 307–310, pp. 87–91, Sep. 2002, doi: https://doi.org/10.1016/S0022-3093(02)01444-8.
[33] D. A. McKeown, F. L. Galeener, and G. E. Brown, “Raman studies of Al coordination in silica-rich sodium aluminosilicate glasses and some related minerals,” J. Non-Cryst. Solids, vol. 68, no. 2–3, pp. 361–378, Nov. 1984, doi: https://doi.org/10.1016/0022-3093(84)90017-6.
[34] A.-M. Welsch, J. L. Knipping, and H. Behrens, “Fe-oxidation state in alkali-trisilicate glasses - A Raman spectroscopic study,” J. Non-Cryst. Solids, vol. 471, pp. 28–38, Sep. 2017, doi: https://doi.org/10.1016/j.jnoncrysol.2017.04.033.
[35] K. Baert et al., “Using Raman spectroscopy as a tool for the detection of iron in glass,” J. Raman Spectrosc., vol. 42, no. 9, pp. 1789–1795, Sep. 2011, doi: https://doi.org/10.1002/jrs.2935.
[36] M. I. Tuheen, M. C. Wilkins, J. McCloy, and J. Du, “The structures of iron silicate glasses with varying iron redox ratios from molecular dynamics simulations and EXAFS analysis,” J. Non-Cryst. Solids, vol. 624, p. 122713, Jan. 2024, doi: https://doi.org/10.1016/j.jnoncrysol.2023.122713.
[37] R. O. Sack, I. S. E. Carmichael, M. Rivers, and M. S. Ghiorso, “Ferric-ferrous equilibria in natural silicate liquids at 1 bar,” Contrib. Mineral. Petrol., vol. 75, no. 4, pp. 369–376, Feb. 1981, doi: https://doi.org/10.1007/BF00374720.
[38] H. Li, P. Hrma, J. D. Vienna, M. Qian, Y. Su, and D. E. Smith, “Effects of Al2O3, B2O3, Na2O, and SiO2 on nepheline formation in borosilicate glasses: chemical and physical correlations,” J. Non-Cryst. Solids, vol. 331, no. 1–3, pp. 202–216, Dec. 2003, doi: https://doi.org/10.1016/j.jnoncrysol.2003.08.082.
[39] R. J. Kirkpatrick, “Crystal Growth from melt: a review,” American Mineralogist, vol. 60, pp. 798–814, 1975.
[40] N. Pathak, S. K. Gupta, K. Sanyal, M. Kumar, R. M. Kadam, and V. Natarajan, “Photoluminescence and EPR studies on Fe3+ doped ZnAl2O4: an evidence for local site swapping of Fe3+ and formation of inverse and normal phase,” Dalton Trans., vol. 43, no. 24, p. 9313, 2014, doi: https://doi.org/10.1039/c4dt00741g.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Raine Antonio, John Bussey, Malin C. J. Dixon Wilkins, Daniel Neuville, Laurent Cormier, John McCloy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-11-03
Published 2024-11-15
Funding data
-
U.S. Department of Energy
Grant numbers 89304022CEM000015