Multi-Spectroscopic Investigations for Comprehensive Structural Analysis of Aluminoborosilicate Glasses: II. Relation Between the Glass Structure and Chemical Properties
DOI:
https://doi.org/10.52825/glass-europe.v2i.1424Keywords:
Aluminoborosilicate Glasses, Structure of Glass Network, Glass Optical BasicityAbstract
Investigating how the chemical composition of glass influences its network structure is a crucial aspect in glass research. In this study, we have used the concept of glass optical basicity (Λglass), calculated from the chemical composition, to explore the relationship between the oxygen chemical environment and various structural parameters within complex network of Na- or/and Ca-bearing aluminoborosilicate glasses. We also incorporated extensive structural data from different glass systems reported in the literature. Our findings demonstrate a strong correlation between optical basicity and the following parameters: the maximum binding energy (B.E.) positions of the XPS O1s spectra, the chemical shifts of 23Na and 27Al from NMR spectra, the Ca-O distances from Ca K-edge XAS spectra, and the non-bridging oxygen (NBO) content calculated from 11B and 27Al NMR data. Furthermore, in low polymerization glasses, optical basicity also shows a strong correlation with the N4 values (proportion of BO4 species) obtained from 11B NMR spectra and the apparent average n value of Qn units derived from Raman spectra. The higher optical basicity aluminoborosilicate glasses is associated with higher oxygen binding energies, shorter Na-O and Ca-O distances, smaller Al-O-Si bond angles, higher NBO contents and lower degrees of network polymerization. This work provides new insights in using glass optical basicity for optimizing formulations of functional glasses and studying the effects of various components within glass systems.
Downloads
References
[1] Dell, W. J.; Bray, P. J.; Xiao, S. Z. 11B NMR Studies and Structural Modeling of Na2O-B2O3-SiO2 Glasses of High Soda Content. Journal of Non-crystalline Solids 1983, 58, 1–16. https://doi.org/10.1016/0022-3093(83)90097-2.
[2] Du, L.-S.; Stebbins, J. F. Network Connectivity in Aluminoborosilicate Glasses: A High-Resolution 11B, 27Al and 17O NMR Study. Journal of Non-Crystalline Solids 2005, 351 (43–45), 3508–3520. https://doi.org/10.1016/j.jnoncrysol.2005.08.033.
[3] Lu, X.; Deng, L.; Du, J.; Vienna, J. D. Predicting Boron Coordination in Multicomponent Borate and Borosilicate Glasses Using Analytical Models and Machine Learning. Journal of Non-Crystalline Solids 2021, 553, 120490. https://doi.org/10.1016/j.jnoncrysol.2020.120490.
[4] Guggenheim, E. A. The Conceptions of Electrical Potential Difference between Two Phases and the Individual Activities of Ions. J. Phys. Chem. 1929, 33 (6), 842–849. https://doi.org/10.1021/j150300a003.
[5] Susa, M.; Li, F.; Nagata, K. Determination of Refractive Index and Absorption Coefficient of Iron- Oxide-Bearing Slags. Metall Trans B 1992, 23 (3), 331–337. https://doi.org/10.1007/BF02656289.
[6] Moringa, K.; Yoshida, H.; Takebe, H. Compositional Dependence of Absorption Spectra of Ti 3+ in Silicate, Borate, and Phosphate Glasses. Journal of the American Ceramic Society 1994, 77 (12), 3113–3118. https://doi.org/10.1111/j.1151-2916.1994.tb04557.x.
[7] Duffy, J. A.; Ingram, M. D. Establishment of an Optical Scale for Lewis Basicity in Inorganic Oxyacids, Molten Salts, and Glasses. J. Am. Chem. Soc. 1971, 93 (24), 6448–6454. https://doi.org/10.1021/ja00753a019.
[8] Duffy, J. A.; Ingram, M. D. An Interpretation of Glass Chemistry in Terms of the Optical Basicity Concept. Journal of Non-Crystalline Solids 1976, 21 (3), 373–410. https://doi.org/10.1016/0022-3093(76)90027-2.
[9] Nakamura T.; Ueda Y.; Toguri J. M. A New Development of the Optical Basicity. J.Japan Inst.Metals 1986, 50 (5), 456–461. https://doi.org/10.2320/jinstmet1952.50.5_456.
[10] Duffy, J. A.; Ingram, M. D. Nephelauxetic Effect and Pauling Electronegativity. J. Chem. Soc., Chem. Commun. 1973, No. 17, 635. https://doi.org/10.1039/c39730000635.
[11] Duffy, J. A. Chemical Bonding in the Oxides of the Elements: A New Appraisal. Journal of Solid State Chemistry 1986, 62 (2), 145–157. https://doi.org/10.1016/0022-4596(86)90225-2.
[12] Dimitrov, V.; Sakka, S. Electronic Oxide Polarizability and Optical Basicity of Simple Oxides. I. Journal of Applied Physics 1996, 79 (3), 1736–1740. https://doi.org/10.1063/1.360962.
[13] Duffy, J. A. The Refractivity and Optical Basicity of Glass. Journal of Non-Crystalline Solids 1986, 86 (1–2), 149–160. https://doi.org/10.1016/0022-3093(86)90484-9.
[14] Iwamoto, N.; Makino, Y.; Kasahara, S. Correlation between Refraction Basicity and Theoretical Optical Basicity Part I. Alkaline and Alkaline-Earth Silicate Glasses. Journal of Non-Crystalline Solids 1984, 68 (2–3), 379–388. https://doi.org/10.1016/0022-3093(84)90018-8.
[15] Portier, J.; Campet, G.; Etourneau, J.; Shastry, M. C. R.; Tanguy, B. A Simple Approach to Materials Design: Role Played by an Ionic-Covalent Parameter Based on Polarizing Power and Electronegativity. Journal of Alloys and Compounds 1994, 209 (1–2), 59–64. https://doi.org/10.1016/0925-8388(94)91076-6.
[16] Lebouteiller, A.; Courtine, P. Improvement of a Bulk Optical Basicity Table for Oxidic Systems. Journal of Solid State Chemistry 1998, 137 (1), 94–103. https://doi.org/10.1006/jssc.1997.7722.
[17] Mills, K. C. The Influence of Structure on the Physico-Chemical Properties of Slags. ISIJ International 1993, 33 (1), 148–155. https://doi.org/10.2355/isijinternational.33.148.
[18] Duffy, J. A. Relationship between Optical Basicity and Thermochemistry of Silicates. J. Phys. Chem. B 2004, 108 (23), 7641–7645. https://doi.org/10.1021/jp031209c.
[19] Beckett, J. R. Role of Basicity and Tetrahedral Speciation in Controlling the Thermodynamic Properties of Silicate Liquids, Part 1: The System CaO-MgO-Al2O3-SiO2. Geochimica et Cosmochimica Acta 2002, 66 (1), 93–107. https://doi.org/10.1016/S0016-7037(01)00751-7.
[20] Lenglet, M. Ligand FIeld Spectroscopy and Chemical Bonding in Cr3+-, Fe3+-, Co2+- and Ni2+-Containing Oxidic Solids Influence of the Inductive Effect of the Competing Bonds and Magnetic Interactions on the Degree of Covalency of the 3d M–O Bonds. Materials Research Bulletin 2000, 35 (4), 531–543. https://doi.org/10.1016/S0025-5408(00)00243-9.
[21] Bordes, E. The Role of Structural Chemistry of Selective Catalysts in Heterogeneous Mild Oxidation Catalysis of Hydrocarbons. Comptes Rendus de l’Académie des Sciences - Series IIC - Chemistry 2000, 3 (9), 725–733. https://doi.org/10.1016/S1387-1609(00)01181-6.
[22] Moriceau, P.; Taouk, B.; Bordes, E.; Courtine, P. Correlations between the Optical Basicity of Catalysts and Their Selectivity in Oxidation of Alcohols, Ammoxidation and Combustion of Hydrocarbons. Catalysis Today 2000, 61 (1–4), 197–201. https://doi.org/10.1016/S0920-5861(00)00380-1.
[23] Prakash, B.; Celis, J. P. The Lubricity of Oxides Revised Based on a Polarisability Approach. Tribol Lett 2007, 27 (1), 105–112. https://doi.org/10.1007/s11249-007-9223-z.
[24] Matsumoto, S.; Nanba, T.; Miura, Y. X-Ray Photoelectron Spectroscopy of Alkali Silicate Glasses. Journal of the Ceramic Society of Japan 1998, 106 (1232), 415–421. https://doi.org/10.2109/jcersj.106.415.
[25] Rodriguez, C. P.; McCloy, J. S.; Schweiger, M. J.; Crum, J. V.; Winschell, A. E. Optical Basicity and Nepheline Crystallization in High Alumina Glasses; PNNL-20184, EMSP-RPT-003, 1019213; 2011. http://www.osti.gov/servlets/purl/1019213-ngYFNj/ (accessed 2024-05-16).
[26] Morizet, Y.; Paris, M.; Hamon, J.; La, C.; Grolleau, S.; Suzuki-Muresan, T. Predicting Iodine Solubility at High Pressure in Borosilicate Nuclear Waste Glasses Using Optical Basicity: An Experimental Study. J Mater Sci 2022, 57 (35), 16600–16618. https://doi.org/10.1007/s10853-022-07686-8.
[27] Soudani, S.; Paris, M.; Morizet, Y. The Effect of Iodine on the Local Environment of Network-Forming Elements in Aluminoborosilicate Glasses: An NMR Study. Journal of the American Ceramic Society 2024, 107 (7), 4557–4571. https://doi.org/10.1111/jace.19764.
[28] Dimitrov, V.; Tasheva, T.; Komatsu, T. Group Optical Basicity and Single Bond Strength of Lead Borate Glasses. Journal of Chemical Technology and Metallurgy (Print) 2018, 53 (6), 1031–1037.
[29] Morizet, Y.; Brooker, R. A.; Iacono-Marziano, G.; Kjarsgaard, B. A. Quantification of Dissolved CO2 in Silicate Glasses Using Micro-Raman Spectroscopy. American Mineralogist 2013, 98 (10), 1788–1802. https://doi.org/10.2138/am.2013.4516.
[30] Morizet, Y.; Paris, M.; Sifré, D.; Di Carlo, I.; Gaillard, F. The Effect of Mg Concentration in Silicate Glasses on CO2 Solubility and Solution Mechanism: Implication for Natural Magmatic Systems. Geochimica et Cosmochimica Acta 2017, 198, 115–130. https://doi.org/10.1016/j.gca.2016.11.006.
[31] Morizet, Y.; Florian, P.; Paris, M.; Gaillllard, F. 17O NMR Evidence of Free Ionic Clusters Mn+ CO32− in Silicate Glasses: Precursors for Carbonate-Silicate Liquids Immiscibility. American Mineralogist 2017, 102 (7), 1561–1564. https://doi.org/doi:10.2138/am-2017-6133.
[32] Morizet, Y.; Hamon, J.; La, C.; Jolivet, V.; Suzuki-Muresan, T.; Paris, M. Immobilization of 129 I in Nuclear Waste Glass Matrixes Synthesized under High-Pressure Conditions: An Experimental Study. J. Mater. Chem. A 2021, 9 (42), 23902–23915. https://doi.org/10.1039/D1TA05011G.
[33] Morizet, Y.; Soudani, S.; Hamon, J.; Paris, M.; La, C.; Gautron, E. Iodine Dissolution Mechanisms in High-Pressure Aluminoborosilicate Glasses and Their Relationship to Oxygen Speciation. J. Mater. Chem. A 2023, 11 (42), 22891–22905. https://doi.org/10.1039/D3TA05344J.
[34] Komatsu, T.; Dimitrov, V.; Tasheva, T.; Honma, T. Electronic Polarizability in Silicate Glasses by Comparison of Experimental and Theoretical Optical Basicities. Int J of Appl Glass Sci 2021, 12 (3), 424–442. https://doi.org/10.1111/ijag.16009.
[35] Nesbitt, H. W.; Bancroft, G. M.; Henderson, G. S.; Ho, R.; Dalby, K. N.; Huang, Y.; Yan, Z. Bridging, Non-Bridging and Free (O2–) Oxygen in Na2O-SiO2 Glasses: An X-Ray Photoelectron Spectroscopic (XPS) and Nuclear Magnetic Resonance (NMR) Study. Journal of Non-Crystalline Solids 2011, 357 (1), 170–180. https://doi.org/10.1016/j.jnoncrysol.2010.09.031.
[36] Miura, Y.; Kusano, H.; Nanba, T.; Matsumoto, S. X-Ray Photoelectron Spectroscopy of Sodium Borosilicate Glasses. Journal of Non-Crystalline Solids 2001, 290 (1), 1–14. https://doi.org/10.1016/S0022-3093(01)00720-7.
[37] Zajacz, Z. The Effect of Melt Composition on the Partitioning of Oxidized Sulfur between Silicate Melts and Magmatic Volatiles. Geochimica et Cosmochimica Acta 2015, 158, 223–244. https://doi.org/10.1016/j.gca.2015.01.036.
[38] Moussallam, Y.; Morizet, Y.; Gaillard, F. H2O–CO2 Solubility in Low SiO2-Melts and the Unique Mode of Kimberlite Degassing and Emplacement. Earth and Planetary Science Letters 2016, 447, 151–160. https://doi.org/10.1016/j.epsl.2016.04.037.
[39] Zajacz, Z.; Tsay, A. An Accurate Model to Predict Sulfur Concentration at Anhydrite Saturation in Silicate Melts. Geochimica et Cosmochimica Acta 2019, 261, 288–304. https://doi.org/10.1016/j.gca.2019.07.007.
[40] Bradtmüller, H.; Uesbeck, T.; Eckert, H.; Murata, T.; Nakane, S.; Yamazaki, H. Structural Origins of Crack Resistance on Magnesium Aluminoborosilicate Glasses Studied by Solid-State NMR. J. Phys. Chem. C 2019, 123 (24), 14941–14954. https://doi.org/10.1021/acs.jpcc.9b03600.
[41] Wu, J.; Stebbins, J. F. Effects of Cation Field Strength on the Structure of Aluminoborosilicate Glasses: High-Resolution 11B, 27Al and 23Na MAS NMR. Journal of Non-Crystalline Solids 2009, 355 (9), 556–562. https://doi.org/10.1016/j.jnoncrysol.2009.01.025.
[42] Zheng, Q. J.; Youngman, R. E.; Hogue, C. L.; Mauro, J. C.; Potuzak, M.; Smedskjaer, M. M.; Yue, Y. Z. Structure of Boroaluminosilicate Glasses: Impact of [Al2O3]/[SiO2] Ratio on the Structural Role of Sodium. Phys. Rev. B 2012, 86 (5), 054203. https://doi.org/10.1103/PhysRevB.86.054203.
[43] Xue, X.; Stebbins, J. F. 23Na NMR Chemical Shifts and Local Na Coordination Environments in Silicate Crystals, Melts and Glasses. Physics and Chemistry of Minerals 1993, 20, 297–307. https://doi.org/10.1007/BF00215100.
[44] Stebbins, J. Cation Sites in Mixed-Alkali Oxide Glasses: Correlations of NMR Chemical Shift Data with Site Size and Bond Distance. Solid State Ionics 1998, 112 (1–2), 137–141. https://doi.org/10.1016/S0167-2738(98)00224-0.
[45] Lee, S. K.; Stebbins, J. F. The Distribution of Sodium Ions in Aluminosilicate Glasses: A High-Field Na-23 MAS and 3Q MAS NMR Study. Geochimica et Cosmochimica Acta 2003, 67 (9), 1699–1709. https://doi.org/10.1016/S0016-7037(03)00026-7.
[46] George, A. M.; Stebbins, J. F. Dynamics of Na in Sodium Aluminosilicate Glasses and Liquids. Phys Chem Minerals 1996, 23 (8). https://doi.org/10.1007/BF00242002.
[47] Maekawa, H.; Nakao, T.; Shimokawa, S.; Yokokawa, T. Coordination of Sodium Ions in NaAlO2-SiO2 Melts: A High Temperature 23Na NMR Study. Physics and Chemistry of Minerals 1997, 24 (1), 53–65. https://doi.org/10.1007/s002690050017.
[48] Koller, H.; Engelhardt, G.; Kentgens, A. P. M.; Sauer, J. 23Na NMR Spectroscopy of Solids: Interpretation of Quadrupole Interaction Parameters and Chemical Shifts. J. Phys. Chem. 1994, 98 (6), 1544–1551. https://doi.org/10.1021/j100057a004.
[49] Angeli, F.; Delaye, J.; Charpentier, T.; Petit, J.-C.; Ghaleb, D.; Faucon, P. Influence of Glass Chemical Composition on the Na-O Bond Distance: A 23Na 3Q-MAS NMR and Molecular Dynamics Study. Journal of Non-Crystalline Solids 2000, 276 (1), 132–144. https://doi.org/10.1016/S0022-3093(00)00259-3.
[50] Tricot, G. The Structure of Pyrex® Glass Investigated by Correlation NMR Spectroscopy. Phys. Chem. Chem. Phys. 2016, 18 (38), 26764–26770. https://doi.org/10.1039/C6CP02996E.
[51] Morizet, Y.; Trcera, N.; Larre, C.; Rivoal, M.; Le Menn, E.; Vantelon, D.; Gaillard, F. X-Ray Absorption Spectroscopic Investigation of the Ca and Mg Environments in CO2-Bearing Silicate Glasses. Chemical Geology 2019, 510, 91–102. https://doi.org/10.1016/j.chemgeo.2019.02.014.
[52] Binsted, N.; Greaves, G. N.; Henderson, C. M. B. An EXAFS Study of Glassy and Crystalline Phases of Compositions CaAl2Si2O8 (Anorthite) and CaMgSi2O6 (Diopside). Contributions to Mineralogy and Petrology 1985, 89 (2), 103–109. https://doi.org/10.1007/BF00379446.
[53] Le Cornec, D.; Cormier, L.; Galoisy, L.; Baptiste, B.; Trcera, N.; Izoret, L.; Calas, G. Molecular Structure of Amorphous Slags: An Experimental and Numerical Approach. Journal of Non-Crystalline Solids 2021, 556, 120444. https://doi.org/10.1016/j.jnoncrysol.2020.120444.
[54] Taniguchi, T.; Okuno, M.; Matsumoto, T. X-Ray Diffraction and EXAFS Studies of Silicate Glasses Containing Mg, Ca and Ba Atoms. Journal of Non-Crystalline Solids 1997, 211 (1–2), 56–63. https://doi.org/10.1016/S0022-3093(96)00632-1.
[55] Hannon, A. C.; Parker, J. M. The Structure of Aluminate Glasses by Neutron Diffraction. Journal of Non-Crystalline Solids 2000, 274 (1), 102–109. https://doi.org/10.1016/S0022-3093(00)00208-8.
[56] Cormier, L.; Calas, G.; Beuneu, B. Structural Changes between Soda-Lime Silicate Glass and Melt. Journal of Non-Crystalline Solids 2011, 357 (3), 926–931. https://doi.org/10.1016/j.jnoncrysol.2010.10.014.
[57] Cormier, L.; Ghaleb, D.; Neuville, D. R.; Delaye, J.-M.; Calas, G. Chemical Dependence of Network Topology of Calcium Aluminosilicate Glasses: A Computer Simulation Study. Journal of Non-Crystalline Solids 2003, 332 (1–3), 255–270. https://doi.org/10.1016/j.jnoncrysol.2003.09.012.
[58] Gambuzzi, E.; Pedone, A.; Menziani, M. C.; Angeli, F.; Florian, P.; Charpentier, T. Calcium Environment in Silicate and Aluminosilicate Glasses Probed by 43Ca MQMAS NMR Experiments and MD-GIPAW Calculations. Solid State Nuclear Magnetic Resonance 2015, 68–69, 31–36. https://doi.org/10.1016/j.ssnmr.2015.04.003.
[59] Shimoda, K.; Tobu, Y.; Shimoikeda, Y.; Nemoto, T.; Saito, K. Multiple Ca2+ Environments in Silicate Glasses by High-Resolution 43Ca MQMAS NMR Technique at High and Ultra-High (21.8T) Magnetic Fields. Journal of Magnetic Resonance 2007, 186 (1), 156–159. https://doi.org/10.1016/j.jmr.2007.01.019.
[60] Gambuzzi, E.; Pedone, A.; Menziani, M. C.; Angeli, F.; Caurant, D.; Charpentier, T. Probing Silicon and Aluminium Chemical Environments in Silicate and Aluminosilicate Glasses by Solid State NMR Spectroscopy and Accurate First-Principles Calculations. Geochimica et Cosmochimica Acta 2014, 125, 170–185. https://doi.org/10.1016/j.gca.2013.10.025.
[61] Jolivet, V.; Morizet, Y.; Paris, M.; Suzuki-Muresan, T. High Pressure Experimental Study on Iodine Solution Mechanisms in Nuclear Waste Glasses. Journal of Nuclear Materials 2020, 533, 152112. https://doi.org/10.1016/j.jnucmat.2020.152112.
[62] Soudani, S.; Paris, M.; Morizet, Y. Influence of High-Pressure on the Short-Range Structure of Ca or Na Aluminoborosilicate Glasses from 11B and 27Al Solid-State NMR. Journal of Non-Crystalline Solids 2024, 638, 123085. https://doi.org/10.1016/j.jnoncrysol.2024.123085.
[63] Lee, A. C.; Lee, S. K. Effect of Composition on Structural Evolution and NMR Parameters of Quadrupolar Nuclides in Sodium Borate and Aluminoborosilicate Glasses: A View from High-Resolution 11B, 27Al, and 17O Solid-State NMR. Journal of Non-Crystalline Solids 2021, 555, 120271. https://doi.org/10.1016/j.jnoncrysol.2020.120271.
[64] Merzbacher, C. I.; Sherriff, B. L.; Hartman, J. S.; White, W. B. A High-Resolution 29Si and 27Al NMR Study of Alkaline Earth Aluminosilicate Glasses. Journal of Non-Crystalline Solids 1990, 124 (2), 194–206. https://doi.org/10.1016/0022-3093(90)90263-L.
[65] Neuville, D. R.; Cormier, L.; Massiot, D. Al Coordination and Speciation in Calcium Aluminosilicate Glasses: Effects of Composition Determined by 27Al MQ-MAS NMR and Raman Spectroscopy. Chemical Geology 2006, 229 (1), 173–185. https://doi.org/10.1016/j.chemgeo.2006.01.019.
[66] Kohn, S. C.; Henderson, C. M.; Dupree, R. Si-Al Ordering in Leucite Group Minerals and Ion-Exchanged Analogues; an MAS NMR Study. American Mineralogist 1997, 82 (11–12), 1133–1140. https://doi.org/10.2138/am-1997-11-1211.
[67] Lippmaa, E.; Samoson, A.; Magi, M. High-Resolution Aluminum-27 NMR of Aluminosilicates. J. Am. Chem. Soc. 1986, 108 (8), 1730–1735. https://doi.org/10.1021/ja00268a002.
[68] Phillips, B. L.; Kirkpatrick, R. J.; Putnis, A. Si,Al Ordering in Leucite by High-Resolution 27Al MAS NMR Spectroscopy. Physics and Chemistry of Minerals 1989, 16 (6), 591–598. https://doi.org/10.1007/BF00202216.
[69] Baltisberger, J. H.; Xu, Z.; Stebbins, J. F.; Wang, S. H.; Pines, A. Triple-Quantum Two-Dimensional 27Al Magic-Angle Spinning Nuclear Magnetic Resonance Spectroscopic Study of Aluminosilicate and Aluminate Crystals and Glasses. J. Am. Chem. Soc. 1996, 118 (30), 7209–7214. https://doi.org/10.1021/ja9606586.
[70] Lee, S. K.; Stebbins, J. F. The Structure of Aluminosilicate Glasses: High-Resolution 17O and 27Al MAS and 3QMAS NMR Study. J. Phys. Chem. B 2000, 104 (17), 4091–4100. https://doi.org/10.1021/jp994273w.
[71] Angeli, F.; Delaye, J.; Charpentier, T.; Petit, J.-C.; Ghaleb, D.; Faucon, P. Investigation of Al–O–Si Bond Angle in Glass by 27Al 3Q-MAS NMR and Molecular Dynamics. Chemical Physics Letters 2000, 320 (5), 681–687. https://doi.org/10.1016/S0009-2614(00)00277-3.
[72] Quintas, A.; Caurant, D.; Majérus, O.; Loiseau, P.; Charpentier, T.; Dussossoy, J.-L. ZrO2 Addition in Soda-Lime Aluminoborosilicate Glasses Containing Rare Earths: Impact on the Network Structure. Journal of Alloys and Compounds 2017, 714, 47–62. https://doi.org/10.1016/j.jallcom.2017.04.182.
[73] El-Damrawi, G.; Müller-Warmuth, W.; Doweidar, H.; Gohar, I. A. Structure and Heat Treatment Effects of Sodium Borosilicate Glasses as Studied by 29Si and 11B NMR. Journal of Non-Crystalline Solids 1992, 146, 137–144. https://doi.org/10.1016/S0022-3093(05)80485-5.
[74] Marcial, J.; Saleh, M.; Watson, D.; Martin, S. W.; Crawford, C. L.; McCloy, J. S. Boron-Speciation and Aluminosilicate Crystallization in Alkali Boroaluminosilicate Glasses along the NaAl1-xBxSiO4 and LiAl1-xBxSiO4 Joins. Journal of Non-Crystalline Solids 2019, 506, 58–67. https://doi.org/10.1016/j.jnoncrysol.2019.01.001.
[75] Mysen, B. O.; Virgo, D.; Seifert, F. A. The Structure of Silicate Melts: Implications for Chemical and Physical Properties of Natural Magma. Reviews of Geophysics 1982, 20 (3), 353–383. https://doi.org/10.1029/RG020i003p00353.
[76] Kuryaeva, R. G. Degree of Polymerization of the CaAl2Si2O8 Aluminosilicate Glass. Glass Phys Chem 2006, 32 (5), 505–510. https://doi.org/10.1134/S1087659606050026.
[77] Bechgaard, T. K.; Goel, A.; Youngman, R. E.; Mauro, J. C.; Rzoska, S. J.; Bockowski, M.; Jensen, L. R.; Smedskjaer, M. M. Structure and Mechanical Properties of Compressed Sodium Aluminosilicate Glasses: Role of Non-Bridging Oxygens. Journal of Non-Crystalline Solids 2016, 441, 49–57. https://doi.org/10.1016/j.jnoncrysol.2016.03.011.
[78] Le Losq, C.; Mysen, B. O.; Cody, G. D. Water Solution Mechanism in Calcium Aluminosilicate Glasses and Melts: Insights from in and Ex Situ Raman and 29Si NMR Spectroscopy. Comptes Rendus. Géoscience 2022, 354 (S1), 199–225. https://doi.org/10.5802/crgeos.127.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hanyu Hu, Sami Soudani, Jonathan Hamon, Nicolas Trcera, Michael Paris, Yann Morizet
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-12-06
Published 2024-12-20
Funding data
-
Agence Nationale de la Recherche
Grant numbers ANR-20-CE08-0018