Multi-Spectroscopic Investigations for Comprehensive Structural Analysis of Aluminoborosilicate Glasses: I. Integrating Raman, XPS, XAS and NMR Techniques

Authors

DOI:

https://doi.org/10.52825/glass-europe.v2i.1422

Keywords:

Aluminoborosilicate Glasses, Raman Spectroscopy, XPS Spectroscopy, NMR Spectroscopy, XAS Spectroscopy

Abstract

For relatively simple glasses, such as binary or ternary glass systems, various characterization techniques have proven effective for determining network structures. However, structural analysis of multicomponent glass systems remains challenging due to complex network structures. In this study, we employed Raman, XPS, XAS, and NMR techniques to investigate the structure of soda lime aluminoborosilicate glasses. Our focus was on the polymerization degree of the silicate network (average Qn value), the content of Non-Bridging Oxygen (NBO%), the connectivity between borate species ([3]B-O-[3]B% and [3]B-O-[4]B%), and the chemical environment of Ca and Na cations. Raman spectral decomposition enabled the determination of the polymerization degree of the silicate network, which agreed well with the values calculated from 11B and 27Al NMR spectra for glasses without B-NBO species. XPS O1s spectra decomposition provided consistent NBO content values with those calculated from NMR results. The 11B DQ-SQ NMR spectra can analyse the connectivity changes between borate species across different glass compositions. The 23Na NMR spectra can provide a comprehensive view of the local environment of Na. The XAS spectra provided reliable insights into the local environment of Ca, detailing first shell configurations not easily obtained via NMR. We also presented an analysis scheme for 11B NMR spectra to distinguish between [4]B(3Si,1B) and [4]B(4Si,0B) species. This study emphasizes the necessity of using a multi-spectroscopic approach to analyse the complex glass network structure.  

Downloads

Download data is not yet available.

References

[1] Januchta, K.; Youngman, R. E.; Goel, A.; Bauchy, M.; Rzoska, S. J.; Bockowski, M.; Smedskjaer, M. M. Structural Origin of High Crack Resistance in Sodium Aluminoborate Glasses. Journal of Non-Crystalline Solids 2017, 460, 54–65. https://doi.org/10.1016/j.jnoncrysol.2017.01.019.

[2] Smedskjaer, M. M.; Zheng, Q.; Mauro, J. C.; Potuzak, M.; Mørup, S.; Yue, Y. Sodium Diffusion in Boroaluminosilicate Glasses. Journal of Non-Crystalline Solids 2011, 357 (22–23), 3744–3750. https://doi.org/10.1016/j.jnoncrysol.2011.07.008.

[3] Bødker, M. S.; Christensen, R.; Sørensen, L. G.; Østergaard, M. B.; Youngman, R. E.; Mauro, J. C.; Smedskjaer, M. M. Predicting Cation Interactions in Alkali Aluminoborate Glasses Using Statistical Mechanics. Journal of Non-Crystalline Solids 2020, 544, 120099. https://doi.org/10.1016/j.jnoncrysol.2020.120099.

[4] Varshneya, A. K.; Mauro, J. C. Chapter 1 - Introduction. In Fundamentals of Inorganic Glasses (Third Edition); Varshneya, A. K., Mauro, J. C., Eds.; Elsevier, 2019; pp 1–18. https://doi.org/10.1016/B978-0-12-816225-5.00001-8.

[5] Wallenberger, F. T.; Bingham, P. A. Fiberglass and Glass Technology; Springer US: Boston, MA, 2010. https://doi.org/10.1007/978-1-4419-0736-3.

[6] Fitzer, E.; Kleinholz, R.; Tiesler, H.; Stacey, M. H.; De Bruyne, R.; Lefever, I.; Heine, M. Fibers, 5. Synthetic Inorganic. In Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Sons, Ltd, 2000. https://doi.org/10.1002/14356007.a11_001.

[7] Lonergan, C.; George, J.; Cutforth, D.; Jin, T.; Cholsaipant, P.; Sannoh, S.; Skidmore, C.; Piepel, G.; Russell, R.; Vienna, J. Enhanced Hanford Low- Activity Waste Glass Property Data Development: Phase 3.

[8] Chick, L. A.; Piepel, G. F. Statistically Designed Optimization of a Glass Composition. Journal of the American Ceramic Society 1984, 67 (11), 763–768. https://doi.org/10.1111/j.1151-2916.1984.tb19514.x.

[9] Russell, R. L.; McCarthy, B. P.; Skidmore, C. H.; Lang, J. B.; Meline, J. M.; Sannoh, S. E.; Gervasio, V.; Stanfill, B. A.; Lonergan, C. E.; Cordova, E. A. Enhanced Hanford Low-Activity Waste Glass Property Data Development: Phase 2 - PNNL-28838 Rev 2, EWG-RPT-021 Rev. 2.

[10] Davis, M. C.; Kaseman, D. C.; Parvani, S. M.; Sanders, K. J.; Grandinetti, P. J.; Massiot, D.; Florian, P. Q(n) Species Distribution in K2O·2SiO2 Glass by 29Si Magic Angle Flipping NMR. J. Phys. Chem. A 2010, 114 (17), 5503–5508. https://doi.org/10.1021/jp100530m.

[11] Henderson, G. S. THE STRUCTURE OF SILICATE MELTS: A GLASS PERSPECTIVE. The Canadian Mineralogist 2005, 43 (6), 1921–1958. https://doi.org/10.2113/gscanmin.43.6.1921.

[12] Poe, B. T.; McMillan, P. F.; Angell, C. A.; Sato, R. K. Al and Si Coordination in SiO2-Al2O3 Glasses and Liquids: A Study by NMR and IR Spectroscopy and MD Simulations. Chemical Geology 1992, 96 (3), 333–349. https://doi.org/10.1016/0009-2541(92)90063-B.

[13] Zheng, Q. J.; Youngman, R. E.; Hogue, C. L.; Mauro, J. C.; Potuzak, M.; Smedskjaer, M. M.; Yue, Y. Z. Structure of Boroaluminosilicate Glasses: Impact of [Al2O3]/[SiO2] Ratio on the Structural Role of Sodium. Phys. Rev. B 2012, 86 (5), 054203. https://doi.org/10.1103/PhysRevB.86.054203.

[14] Jolivet, V.; Jossé, L.; Rivoal, M.; Paris, M.; Morizet, Y.; Carole, L.; Suzuki-Muresan, T. Quantification of Boron in Aluminoborosilicate Glasses Using Raman and 11B NMR. Journal of Non-Crystalline Solids 2019, 511, 50–61. https://doi.org/10.1016/j.jnoncrysol.2018.12.038.

[15] Du, L.-S.; Stebbins, J. F. Network Connectivity in Aluminoborosilicate Glasses: A High-Resolution 11B, 27Al and 17O NMR Study. Journal of Non-Crystalline Solids 2005, 351 (43–45), 3508–3520. https://doi.org/10.1016/j.jnoncrysol.2005.08.033.

[16] Du, L.-S.; Stebbins, J. F. Solid-State NMR Study of Metastable Immiscibility in Alkali Borosilicate Glasses. Journal of Non-Crystalline Solids 2003, 315 (3), 239–255. https://doi.org/10.1016/S0022-3093(02)01604-6.

[17] Lee, S. K.; Kim, H.-I.; Kim, E. J.; Mun, K. Y.; Ryu, S. Extent of Disorder in Magnesium Aluminosilicate Glasses: Insights from 27 Al and 17 O NMR. J. Phys. Chem. C 2016, 120 (1), 737–749. https://doi.org/10.1021/acs.jpcc.5b10799.

[18] Bødker, M. S.; Youngman, R. E.; Mauro, J. C.; Smedskjaer, M. M. Mixed Alkali Effect in Silicate Glass Structure: Viewpoint of 29 Si Nuclear Magnetic Resonance and Statistical Mechanics. J. Phys. Chem. B 2020, 124 (45), 10292–10299. https://doi.org/10.1021/acs.jpcb.0c07980.

[19] Nesbitt, H. W.; Henderson, G. S.; Bancroft, G. M.; Neuville, D. R. Spectral Resolution and Raman Q3 and Q2 Cross Sections in ~40 Mol% Na2O Glasses. Chemical Geology 2021, 562, 120040. https://doi.org/10.1016/j.chemgeo.2020.120040.

[20] Manara, D.; Grandjean, A.; Neuville, D. R. Advances in Understanding the Structure of Borosilicate Glasses: A Raman Spectroscopy Study. American Mineralogist 2009, 94 (5–6), 777–784. https://doi.org/10.2138/am.2009.3027.

[21] Wang, P. W.; Zhang, L. Structural Role of Lead in Lead Silicate Glasses Derived from XPS Spectra. Journal of Non-Crystalline Solids 1996, 194 (1–2), 129–134. https://doi.org/10.1016/0022-3093(95)00471-8.

[22] Sprenger, D.; Bach, H.; Meisel, W.; Gütlich, P. XPS Study of Leached Glass Surfaces. Journal of Non-Crystalline Solids 1990, 126 (1–2), 111–129. https://doi.org/10.1016/0022-3093(90)91029-Q.

[23] Matsumoto, S.; Nanba, T.; Miura, Y. X-Ray Photoelectron Spectroscopy of Alkali Silicate Glasses. Journal of the Ceramic Society of Japan 1998, 106 (1232), 415–421. https://doi.org/10.2109/jcersj.106.415.

[24] Neuville, D. R.; Cormier, L.; Flank, A.-M.; Briois, V.; Massiot, D. Al Speciation and Ca Environment in Calcium Aluminosilicate Glasses and Crystals by Al and Ca K-Edge X-Ray Absorption Spectroscopy. Chemical Geology 2004, 213 (1–3), 153–163. https://doi.org/10.1016/j.chemgeo.2004.08.039.

[25] Le Cornec, D.; Cormier, L.; Galoisy, L.; Baptiste, B.; Trcera, N.; Izoret, L.; Calas, G. Molecular Structure of Amorphous Slags: An Experimental and Numerical Approach. Journal of Non-Crystalline Solids 2021, 556, 120444. https://doi.org/10.1016/j.jnoncrysol.2020.120444.

[26] Cormier, L.; Cuello, G. J. Structural Investigation of Glasses along the MgSiO3–CaSiO3 Join: Diffraction Studies. Geochimica et Cosmochimica Acta 2013, 122, 498–510. https://doi.org/10.1016/j.gca.2013.04.026.

[27] Cicconi, M. R.; Ligny, D. de; Gallo, T. M.; Neuville, D. R. Ca Neighbors from XANES Spectroscopy: A Tool to Investigate Structure, Redox, and Nucleation Processes in Silicate Glasses, Melts, and Crystals. American Mineralogist 2016, 101 (5), 1232–1235. https://doi.org/doi:10.2138/am-2016-5663.

[28] Morizet, Y.; Trcera, N.; Larre, C.; Rivoal, M.; Le Menn, E.; Vantelon, D.; Gaillard, F. X-Ray Absorption Spectroscopic Investigation of the Ca and Mg Environments in CO2-Bearing Silicate Glasses. Chemical Geology 2019, 510, 91–102. https://doi.org/10.1016/j.chemgeo.2019.02.014.

[29] Morizet, Y.; Trcera, N.; Suzuki-Muresan, T.; Soudani, S.; Fonda, E.; Paris, M. Local Environment of Iodine Dissolved as Iodate in High-Pressure Aluminoborosilicate Glasses: A I K-Edge x-Ray Absorption Spectroscopic Study. J. Chem. Phys. 2022, 156 (15), 154508. https://doi.org/10.1063/5.0089039.

[30] Stebbins, J. F.; Farnan, I.; Xue, X. The Structure and Dynamics of Alkali Silicate Liquids: A View from NMR Spectroscopy. Chemical Geology 1992, 96 (3–4), 371–385. https://doi.org/10.1016/0009-2541(92)90066-E.

[31] Larsen, F. H.; Farnan, I. 29Si and 17O (Q)CPMG-MAS Solid-State NMR Experiments as an Optimum Approach for Half-Integer Nuclei Having Long T1 Relaxation Times. Chemical Physics Letters 2002, 357 (5–6), 403–408. https://doi.org/10.1016/S0009-2614(02)00520-1.

[32] Sun, K. FUNDAMENTAL CONDITION OF GLASS FORMATION*. Journal of the American Ceramic Society 1947, 30 (9), 277–281. https://doi.org/10.1111/j.1151-2916.1947.tb19654.x.

[33] Stebbins, J. F. Identification of Multiple Structural Species in Silicate Glasses by 29Si NMR. Nature 1987, 330 (6147), 465–467. https://doi.org/10.1038/330465a0.

[34] Le Losq, C.; Neuville, D. R.; Florian, P.; Henderson, G. S.; Massiot, D. The Role of Al3+ on Rheology and Structural Changes in Sodium Silicate and Aluminosilicate Glasses and Melts. Geochimica et Cosmochimica Acta 2014, 126, 495–517. https://doi.org/10.1016/j.gca.2013.11.010.

[35] Dell, W. J.; Bray, P. J.; Xiao, S. Z. 11B NMR Studies and Structural Modeling of Na2O-B2O3-SiO2 Glasses of High Soda Content. Journal of Non-crystalline Solids 1983, 58, 1–16. https://doi.org/10.1016/0022-3093(83)90097-2.

[36] Morizet, Y.; Vuilleumier, R.; Paris, M. A NMR and Molecular Dynamics Study of CO2-Bearing Basaltic Melts and Glasses. Chemical Geology 2015, 418, 89–103. https://doi.org/10.1016/j.chemgeo.2015.03.021.

[37] Morizet, Y.; Paris, M.; Gaillard, F.; Scaillet, B. Carbon Dioxide in Silica-Undersaturated Melt Part II: Effect of CO2 on Quenched Glass Structure. Geochimica et Cosmochimica Acta 2014, 144, 202–216. https://doi.org/10.1016/j.gca.2014.08.034.

[38] Moulton, B. J. A.; Silva, L. D.; Doerenkamp, C.; Lozano, H.; Zanotto, E. D.; Eckert, H.; Pizani, P. S. Speciation and Polymerization in a Barium Silicate Glass: Evidence from 29Si NMR and Raman Spectroscopies. Chemical Geology 2021, 586, 120611. https://doi.org/10.1016/j.chemgeo.2021.120611.

[39] Maekawa, H.; Nakao, T.; Shimokawa, S.; Yokokawa, T. Coordination of Sodium Ions in NaAlO2-SiO2 Melts: A High Temperature 23Na NMR Study. Physics and Chemistry of Minerals 1997, 24 (1), 53–65. https://doi.org/10.1007/s002690050017.

[40] Edén, M.; Sundberg, P.; Stålhandske, C. The Split Network Analysis for Exploring Composition–Structure Correlations in Multi-Component Glasses: II. Multinuclear NMR Studies of Alumino-Borosilicates and Glass-Wool Fibers. Journal of Non-Crystalline Solids 2011, 357 (6), 1587–1594. https://doi.org/10.1016/j.jnoncrysol.2010.11.101.

[41] Charpentier, T.; Menziani, M. C.; Pedone, A. Computational Simulations of Solid State NMR Spectra: A New Era in Structure Determination of Oxide Glasses. RSC Adv. 2013, 3 (27), 10550. https://doi.org/10.1039/c3ra40627j.

[42] Hung, I.; Gan, Z.; Gor’kov, P. L.; Kaseman, D. C.; Sen, S.; LaComb, M.; Stebbins, J. F. Detection of “Free” Oxide Ions in Low-Silica Ca/Mg Silicate Glasses: Results from 17O →29Si HETCOR NMR. Journal of Non-Crystalline Solids 2016, 445–446, 1–6. https://doi.org/10.1016/j.jnoncrysol.2016.04.042.

[43] Stebbins, J. F. Anionic Speciation in Sodium and Potassium Silicate Glasses near the Metasilicate ([Na,K]2SiO3) Composition: 29Si, 17O, and 23Na MAS NMR. Journal of Non-Crystalline Solids: X 2020, 6, 100049. https://doi.org/10.1016/j.nocx.2020.100049.

[44] Ackerson, M. R.; Cody, G. D.; Mysen, B. O. 29Si Solid State NMR and Ti K-Edge XAFS Pre-Edge Spectroscopy Reveal Complex Behavior of Ti in Silicate Melts. Prog Earth Planet Sci 2020, 7 (1), 14. https://doi.org/10.1186/s40645-020-00326-2.

[45] Matson, D. W.; Sharma, S. K.; Philpotts, J. A. The Structure of High-Silica Alkali-Silicate Glasses. A Raman Spectroscopic Investigation. Journal of Non-Crystalline Solids 1983, 58 (2–3), 323–352. https://doi.org/10.1016/0022-3093(83)90032-7.

[46] Zakaznova-Herzog, V. P.; Malfait, W. J.; Herzog, F.; Halter, W. E. Quantitative Raman Spectroscopy: Principles and Application to Potassium Silicate Glasses. Journal of Non-Crystalline Solids 2007, 353 (44–46), 4015–4028. https://doi.org/10.1016/j.jnoncrysol.2007.06.033.

[47] Neuville, D. R.; De Ligny, D.; Henderson, G. S. Advances in Raman Spectroscopy Applied to Earth and Material Sciences. Reviews in Mineralogy and Geochemistry 2014, 78 (1), 509–541. https://doi.org/10.2138/rmg.2013.78.13.

[48] Frantz, J. D.; Mysen, B. O. Raman Spectra and Structure of BaO-SiO2 SrO-SiO2 and CaO-SiO2 Melts to 1600°C. Chemical Geology 1995, 121 (1–4), 155–176. https://doi.org/10.1016/0009-2541(94)00127-T.

[49] McMillan, P. Structural Studies of Silicate Glasses and Melts-Applications and Limitations of Raman Spectroscopy. American Mineralogist 1984, 69 (7–8), 622–644.

[50] Angeli, F.; Villain, O.; Schuller, S.; Charpentier, T.; De Ligny, D.; Bressel, L.; Wondraczek, L. Effect of Temperature and Thermal History on Borosilicate Glass Structure. Phys. Rev. B 2012, 85 (5), 054110. https://doi.org/10.1103/PhysRevB.85.054110.

[51] Mysen, B. O.; Virgo, D.; Scarfe, C. M. Relations between the Anionic Structure and Viscosity of Silicate Melts-a Raman Spectroscopic Study. American Mineralogist 1980, 65 (7–8), 690–710.

[52] Mysen, B. O.; Virgo, D.; Seifert, F. A. The Structure of Silicate Melts: Implications for Chemical and Physical Properties of Natural Magma. Reviews of Geophysics 1982, 20 (3), 353–383. https://doi.org/10.1029/RG020i003p00353.

[53] Park, S. Y.; Lee, S. K. Structure and Disorder in Basaltic Glasses and Melts: Insights from High-Resolution Solid-State NMR Study of Glasses in Diopside–Ca-Tschermakite Join and Diopside–Anorthite Eutectic Composition. Geochimica et Cosmochimica Acta 2012, 80, 125–142. https://doi.org/10.1016/j.gca.2011.12.002.

[54] Aguiar, P. M.; Michaelis, V. K.; McKinley, C. M.; Kroeker, S. Network Connectivity in Cesium Borosilicate Glasses: 17O Multiple-Quantum MAS and Double-Resonance NMR. Journal of Non-Crystalline Solids 2013, 363, 50–56. https://doi.org/10.1016/j.jnoncrysol.2012.12.010.

[55] Angeli, F.; Charpentier, T.; Gin, S.; Petit, J. C. 17O 3Q-MAS NMR Characterization of a Sodium Aluminoborosilicate Glass and Its Alteration Gel. Chemical Physics Letters 2001, 341 (1–2), 23–28. https://doi.org/10.1016/S0009-2614(01)00423-7.

[56] Angeli, F.; Charpentier, T.; Gaillard, M.; Jollivet, P. Influence of Zirconium on the Structure of Pristine and Leached Soda-Lime Borosilicate Glasses: Towards a Quantitative Approach by 17O MQMAS NMR. Journal of Non-Crystalline Solids 2008, 354 (31), 3713–3722. https://doi.org/10.1016/j.jnoncrysol.2008.03.046.

[57] Angeli, F.; Charpentier, T.; Molières, E.; Soleilhavoup, A.; Jollivet, P.; Gin, S. Influence of Lanthanum on Borosilicate Glass Structure: A Multinuclear MAS and MQMAS NMR Investigation. Journal of Non-Crystalline Solids 2013, 376, 189–198. https://doi.org/10.1016/j.jnoncrysol.2013.05.042.

[58] Bisbrouck, N.; Bertani, M.; Angeli, F.; Charpentier, T.; Ligny, D.; Delaye, J.; Gin, S.; Micoulaut, M. Impact of Magnesium on the Structure of Aluminoborosilicate Glasses: A Solid‐state NMR and Raman Spectroscopy Study. J Am Ceram Soc 2021, 104 (9), 4518–4536. https://doi.org/10.1111/jace.17876.

[59] Du, L.-S.; Stebbins, J. F. Site Connectivities in Sodium Aluminoborate Glasses: Multinuclear and Multiple Quantum NMR Results. Solid State Nuclear Magnetic Resonance 2005, 27 (1–2), 37–49. https://doi.org/10.1016/j.ssnmr.2004.08.003.

[60] Lee, A. C.; Lee, S. K. Effect of Composition on Structural Evolution and NMR Parameters of Quadrupolar Nuclides in Sodium Borate and Aluminoborosilicate Glasses: A View from High-Resolution 11B, 27Al, and 17O Solid-State NMR. Journal of Non-Crystalline Solids 2021, 555, 120271. https://doi.org/10.1016/j.jnoncrysol.2020.120271.

[61] Lee, S. K.; Lee, B. H. Atomistic Origin of Germanate Anomaly in GeO2 and Na-Germanate Glasses: Insights from Two-Dimensional 17O NMR and Quantum Chemical Calculations. J. Phys. Chem. B 2006, 110 (33), 16408–16412. https://doi.org/10.1021/jp063847b.

[62] Lee, S. K.; Stebbins, J. F. The Distribution of Sodium Ions in Aluminosilicate Glasses: A High-Field Na-23 MAS and 3Q MAS NMR Study. Geochimica et Cosmochimica Acta 2003, 67 (9), 1699–1709. https://doi.org/10.1016/S0016-7037(03)00026-7.

[63] Lee, S. K.; Stebbins, J. F. Effects of the Degree of Polymerization on the Structure of Sodium Silicate and Aluminosilicate Glasses and Melts: An 17O NMR Study. Geochimica et Cosmochimica Acta 2009, 73 (4), 1109–1119. https://doi.org/10.1016/j.gca.2008.10.040.

[64] Lee, S. K.; Sung, S. The Effect of Network-Modifying Cations on the Structure and Disorder in Peralkaline Ca–Na Aluminosilicate Glasses: O-17 3QMAS NMR Study. Chemical Geology 2008, 256 (3–4), 326–333. https://doi.org/10.1016/j.chemgeo.2008.07.019.

[65] Nesbitt, H. W.; Henderson, G. S.; Bancroft, G. M.; O’Shaughnessy, C. Electron Densities over Si and O Atoms of Tetrahedra and Their Impact on Raman Stretching Frequencies and Si-NBO Force Constants. Chemical Geology 2017, 461, 65–74. https://doi.org/10.1016/j.chemgeo.2016.11.022.

[66] Nesbitt, H. W.; Bancroft, G. M.; Henderson, G. S.; Ho, R.; Dalby, K. N.; Huang, Y.; Yan, Z. Bridging, Non-Bridging and Free (O2–) Oxygen in Na2O-SiO2 Glasses: An X-Ray Photoelectron Spectroscopic (XPS) and Nuclear Magnetic Resonance (NMR) Study. Journal of Non-Crystalline Solids 2011, 357 (1), 170–180. https://doi.org/10.1016/j.jnoncrysol.2010.09.031.

[67] Morizet, Y.; Soudani, S.; Hamon, J.; Paris, M.; La, C.; Gautron, E. Iodine Dissolution Mechanisms in High-Pressure Aluminoborosilicate Glasses and Their Relationship to Oxygen Speciation. J. Mater. Chem. A 2023, 11 (42), 22891–22905. https://doi.org/10.1039/D3TA05344J.

[68] Neuville, D. R.; Cormier, L.; Massiot, D. Al Environment in Tectosilicate and Peraluminous Glasses: A 27Al MQ-MAS NMR, Raman, and XANES Investigation. Geochimica et Cosmochimica Acta 2004, 68 (24), 5071–5079. https://doi.org/10.1016/j.gca.2004.05.048.

[69] Soudani, S.; Paris, M.; Morizet, Y. Influence of High-Pressure on the Short-Range Structure of Ca or Na Aluminoborosilicate Glasses from 11B and 27Al Solid-State NMR. Journal of Non-Crystalline Solids 2024, 638, 123085. https://doi.org/10.1016/j.jnoncrysol.2024.123085.

[70] Morizet, Y.; Hamon, J.; La, C.; Jolivet, V.; Suzuki-Muresan, T.; Paris, M. Immobilization of 129 I in Nuclear Waste Glass Matrixes Synthesized under High-Pressure Conditions: An Experimental Study. J. Mater. Chem. A 2021, 9 (42), 23902–23915. https://doi.org/10.1039/D1TA05011G.

[71] Fairley, N.; Fernandez, V.; Richard‐Plouet, M.; Guillot-Deudon, C.; Walton, J.; Smith, E.; Flahaut, D.; Greiner, M.; Biesinger, M.; Tougaard, S.; Morgan, D.; Baltrusaitis, J. Systematic and Collaborative Approach to Problem Solving Using X-Ray Photoelectron Spectroscopy. Applied Surface Science Advances 2021, 5, 100112. https://doi.org/10.1016/j.apsadv.2021.100112.

[72] Flank, A.-M.; Cauchon, G.; Lagarde, P.; Bac, S.; Janousch, M.; Wetter, R.; Dubuisson, J.-M.; Idir, M.; Langlois, F.; Moreno, T.; Vantelon, D. LUCIA, a Microfocus Soft XAS Beamline. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2006, 246 (1), 269–274. https://doi.org/10.1016/j.nimb.2005.12.007.

[73] Vantelon, D.; Trcera, N.; Roy, D.; Moreno, T.; Mailly, D.; Guilet, S.; Metchalkov, E.; Delmotte, F.; Lassalle, B.; Lagarde, P.; Flank, A.-M. The LUCIA Beamline at SOLEIL. J Synchrotron Rad 2016, 23 (2), 635–640. https://doi.org/10.1107/S1600577516000746.

[74] Ravel, B.; Newville, M. ATHENA , ARTEMIS , HEPHAESTUS : Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT. J Synchrotron Rad 2005, 12 (4), 537–541. https://doi.org/10.1107/S0909049505012719.

[75] Project, T. M. Materials Data on CaO by Materials Project. 2020. https://doi.org/10.17188/1201098.

[76] Project, T. M. Materials Data on CaAl2(SiO4)2 by Materials Project. 2019. https://doi.org/10.17188/1711288.

[77] Eckersley, M. C.; Gaskell, P. H.; Barnes, A. C.; Chieux, P. The Environment of Ca Ions in Silicate Glasses. Journal of Non-Crystalline Solids 1988, 106 (1–3), 132–136. https://doi.org/10.1016/0022-3093(88)90246-3.

[78] Cormier, L.; Calas, G.; Gaskell, P. H. Cationic Environment in Silicate Glasses Studied by Neutron Diffraction with Isotopic Substitution. Chemical Geology 2001, 174 (1–3), 349–363. https://doi.org/10.1016/S0009-2541(00)00325-9.

[79] Hahn, E. L. Spin Echoes. Phys. Rev. 1950, 80 (4), 580–594. https://doi.org/10.1103/PhysRev.80.580.

[80] Kentgens, A. P. M.; Verhagen, R. Advantages of Double Frequency Sweeps in Static, MAS and MQMAS NMR of Spin I = 3/2 Nuclei. Chemical Physics Letters 1999, 300 (3), 435–443. https://doi.org/10.1016/S0009-2614(98)01402-X.

[81] Edén, M.; Zhou, D.; Yu, J. Improved Double-Quantum NMR Correlation Spectroscopy of Dipolar-Coupled Quadrupolar Spins. Chemical Physics Letters 2006, 431 (4–6), 397–403. https://doi.org/10.1016/j.cplett.2006.09.081.

[82] Wang, Q.; Hu, B.; Lafon, O.; Trébosc, J.; Deng, F.; Amoureux, J. P. Double-Quantum Homonuclear NMR Correlation Spectroscopy of Quadrupolar Nuclei Subjected to Magic-Angle Spinning and High Magnetic Field. Journal of Magnetic Resonance 2009, 200 (2), 251–260. https://doi.org/10.1016/j.jmr.2009.07.009.

[83] Moulton, B. J. A.; Picinin, A.; Silva, L. D.; Doerenkamp, C.; Lozano, H.; Sampaio, D.; Zanotto, E. D.; Du, J.; Eckert, H.; Pizani, P. S. A Critical Evaluation of Barium Silicate Glass Network Polymerization. Journal of Non-Crystalline Solids 2022, 583, 121477. https://doi.org/10.1016/j.jnoncrysol.2022.121477.

[84] Tricot, G. The Structure of Pyrex® Glass Investigated by Correlation NMR Spectroscopy. Phys. Chem. Chem. Phys. 2016, 18 (38), 26764–26770. https://doi.org/10.1039/C6CP02996E.

[85] Gervais, C.; Laurencin, D.; Wong, A.; Pourpoint, F.; Labram, J.; Woodward, B.; Howes, A. P.; Pike, K. J.; Dupree, R.; Mauri, F.; Bonhomme, C.; Smith, M. E. New Perspectives on Calcium Environments in Inorganic Materials Containing Calcium–Oxygen Bonds: A Combined Computational–Experimental 43Ca NMR Approach. Chemical Physics Letters 2008, 464 (1–3), 42–48. https://doi.org/10.1016/j.cplett.2008.09.004.

[86] Cormier, L.; Neuville, D. R. Ca and Na Environments in Na2O–CaO–Al2O3–SiO2 Glasses: Influence of Cation Mixing and Cation-Network Interactions. Chemical Geology 2004, 213 (1–3), 103–113. https://doi.org/10.1016/j.chemgeo.2004.08.049.

[87] Lee, S. K.; Stebbins, J. F. Nature of Cation Mixing and Ordering in Na-Ca Silicate Glasses and Melts. J. Phys. Chem. B 2003, 107 (14), 3141–3148. https://doi.org/10.1021/jp027489y.

[88] Roselieb, K.; Jambon, A. Tracer Diffusion of Mg, Ca, Sr, and Ba in Na-Aluminosilicate Melts. Geochimica et Cosmochimica Acta 2002, 66 (1), 109–123. https://doi.org/10.1016/S0016-7037(01)00754-2.

[89] Cormier, L.; Ghaleb, D.; Neuville, D. R.; Delaye, J.-M.; Calas, G. Chemical Dependence of Network Topology of Calcium Aluminosilicate Glasses: A Computer Simulation Study. Journal of Non-Crystalline Solids 2003, 332 (1–3), 255–270. https://doi.org/10.1016/j.jnoncrysol.2003.09.012.

[90] Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J.-O.; Bujoli, B.; Gan, Z.; Hoatson, G. Modelling One- and Two-Dimensional Solid-State NMR Spectra: Modelling 1D and 2D Solid-State NMR Spectra. Magn. Reson. Chem. 2002, 40 (1), 70–76. https://doi.org/10.1002/mrc.984.

[91] Angeli, F.; Villain, O.; Schuller, S.; Ispas, S.; Charpentier, T. Insight into Sodium Silicate Glass Structural Organization by Multinuclear NMR Combined with First-Principles Calculations. Geochimica et Cosmochimica Acta 2011, 75 (9), 2453–2469. https://doi.org/10.1016/j.gca.2011.02.003.

[92] Xue, X.; Stebbins, J. F. 23Na NMR Chemical Shifts and Local Na Coordination Environments in Silicate Crystals, Melts and Glasses. Physics and Chemistry of Minerals 1993, 20, 297–307. https://doi.org/10.1007/BF00215100.

[93] Stebbins, J. Cation Sites in Mixed-Alkali Oxide Glasses: Correlations of NMR Chemical Shift Data with Site Size and Bond Distance. Solid State Ionics 1998, 112 (1–2), 137–141. https://doi.org/10.1016/S0167-2738(98)00224-0.

[94] Edén, M. Chapter Four - Update on 27Al NMR Studies of Aluminosilicate Glasses. In Annual Reports on NMR Spectroscopy; Elsevier, 2020; Vol. 101, pp 285–410. https://doi.org/10.1016/bs.arnmr.2020.07.002.

[95] Kelsey, K. E.; Stebbins, J. F.; Singer, D. M.; Brown, G. E.; Mosenfelder, J. L.; Asimow, P. D. Cation Field Strength Effects on High Pressure Aluminosilicate Glass Structure: Multinuclear NMR and La XAFS Results. Geochimica et Cosmochimica Acta 2009, 73 (13), 3914–3933. https://doi.org/10.1016/j.gca.2009.03.040.

[96] Toplis, M. J.; Kohn, S. C.; Smith, M. E.; Poplett, I. J. F. Letter. Fivefold-Coordinated Aluminum in Tectosilicate Glasses Observed by Triple Quantum MAS NMR. American Mineralogist 2000, 85 (10), 1556–1560. https://doi.org/10.2138/am-2000-1031.

[97] Neuville, D. R.; Cormier, L.; Massiot, D. Al Coordination and Speciation in Calcium Aluminosilicate Glasses: Effects of Composition Determined by 27Al MQ-MAS NMR and Raman Spectroscopy. Chemical Geology 2006, 229 (1), 173–185. https://doi.org/10.1016/j.chemgeo.2006.01.019.

[98] Neuville, D. R.; Cormier, L.; Montouillout, V.; Massiot, D. Local Al Site Distribution in Aluminosilicate Glasses by 27Al MQMAS NMR. Journal of Non-Crystalline Solids 2007, 353 (2), 180–184. https://doi.org/10.1016/j.jnoncrysol.2006.09.035.

[99] Allwardt, J. R.; Stebbins, J. F.; Terasaki, H.; Du, L.-S.; Frost, D. J.; Withers, A. C.; Hirschmann, M. M.; Suzuki, A.; Ohtani, E. Effect of Structural Transitions on Properties of High-Pressure Silicate Melts: 27Al NMR, Glass Densities, and Melt Viscosities. American Mineralogist 2007, 92 (7), 1093–1104. https://doi.org/10.2138/am.2007.2530.

[100] Angeli, F.; Delaye, J.; Charpentier, T.; Petit, J.-C.; Ghaleb, D.; Faucon, P. Investigation of Al–O–Si Bond Angle in Glass by 27Al 3Q-MAS NMR and Molecular Dynamics. Chemical Physics Letters 2000, 320 (5), 681–687. https://doi.org/10.1016/S0009-2614(00)00277-3.

[101] Quintas, A.; Charpentier, T.; Majérus, O.; Caurant, D.; Dussossoy, J.-L.; Vermaut, P. NMR Study of a Rare-Earth Aluminoborosilicate Glass with Varying CaO-to-Na2O Ratio. Appl Magn Reson 2007, 32 (4), 613–634. https://doi.org/10.1007/s00723-007-0041-0.

[102] Wu, J.; Stebbins, J. F. Effects of Cation Field Strength on the Structure of Aluminoborosilicate Glasses: High-Resolution 11B, 27Al and 23Na MAS NMR. Journal of Non-Crystalline Solids 2009, 355 (9), 556–562. https://doi.org/10.1016/j.jnoncrysol.2009.01.025.

[103] Lee, S. K.; Mibe, K.; Fei, Y.; Cody, G. D.; Mysen, B. O. Structure of B2O3 Glass at High Pressure: A 11B Solid-State NMR Study. Phys. Rev. Lett. 2005, 94 (16), 165507. https://doi.org/10.1103/PhysRevLett.94.165507.

[104] Montouillout, V.; Fan, H.; Del Campo, L.; Ory, S.; Rakhmatullin, A.; Fayon, F.; Malki, M. Ionic Conductivity of Lithium Borate Glasses and Local Structure Probed by High Resolution Solid-Sate NMR. Journal of Non-Crystalline Solids 2018, 484, 57–64. https://doi.org/10.1016/j.jnoncrysol.2018.01.020.

[105] Lee, S. K.; Stebbins, J. F. Extent of Intermixing among Framework Units in Silicate Glasses and Melts. Geochimica et Cosmochimica Acta 2002, 66 (2), 303–309. https://doi.org/10.1016/S0016-7037(01)00775-X.

[106] Angeli, F.; Charpentier, T.; De Ligny, D.; Cailleteau, C. Boron Speciation in Soda-Lime Borosilicate Glasses Containing Zirconium: Boron Speciation in Soda-Lime Borosilicate Glasses. Journal of the American Ceramic Society 2010, 93 (9), 2693–2704. https://doi.org/10.1111/j.1551-2916.2010.03771.x.

[107] Du, L.-S.; Stebbins, J. F. Nature of Silicon−Boron Mixing in Sodium Borosilicate Glasses: A High-Resolution 11 B and 17 O NMR Study. J. Phys. Chem. B 2003, 107 (37), 10063–10076. https://doi.org/10.1021/jp034048l.

[108] Lv, P.; Stevensson, B.; Yu, Y.; Wang, T.; Edén, M. BO3/BO4 Intermixing in Borosilicate Glass Networks Probed by Double-Quantum 11B NMR: What Factors Govern BO4-BO4 Formation? J. Phys. Chem. C 2023, 127 (40), 20026–20040. https://doi.org/10.1021/acs.jpcc.3c03577.

[109] Doumert, B.; Lecomte, F.; Tricot, G. Advanced Solid State 1D/2D NMR Investigation of the B2O3-Zn(PO3)2 Glasses. Journal of Non-Crystalline Solids 2020, 548, 120325. https://doi.org/10.1016/j.jnoncrysol.2020.120325.

[110] Tricot, G.; Ben Tayeb, K.; Koudelka, L.; Mosner, P.; Vezin, H. Insertion of MoO3 in Borophosphate Glasses Investigated by Magnetic Resonance Spectroscopies. J. Phys. Chem. C 2016, 120 (17), 9443–9452. https://doi.org/10.1021/acs.jpcc.6b02502.

[111] Tricot, G.; Saitoh, A.; Takebe, H. Intermediate Length Scale Organisation in Tin Borophosphate Glasses: New Insights from High Field Correlation NMR. Phys. Chem. Chem. Phys. 2015, 17 (44), 29531–29540. https://doi.org/10.1039/C5CP02095F.

[112] Muñoz-Senovilla, L.; Tricot, G.; Muñoz, F. Kinetic Fragility and Structure of Lithium Borophosphate Glasses Analysed by 1D/2D NMR. Phys. Chem. Chem. Phys. 2017, 19 (34), 22777–22784. https://doi.org/10.1039/C7CP04171C.

[113] Lee, S. K.; Lee, A. C.; Kweon, J. J. Probing Medium-Range Order in Oxide Glasses at High Pressure. J. Phys. Chem. Lett. 2021, 12 (4), 1330–1338. https://doi.org/10.1021/acs.jpclett.1c00055.

[114] Yu, Y.; Stevensson, B.; Edén, M. Direct Experimental Evidence for Abundant BO4–BO4 Motifs in Borosilicate Glasses From Double-Quantum 11B NMR Spectroscopy. J. Phys. Chem. Lett. 2018, 9 (21), 6372–6376. https://doi.org/10.1021/acs.jpclett.8b02907.

[115] Tricot, G.; Raguenet, B.; Silly, G.; Ribes, M.; Pradel, A.; Eckert, H. P–O–B3 Linkages in Borophosphate Glasses Evidenced by High Field 11B/31P Correlation NMR. Chem. Commun. 2015, 51 (45), 9284–9286. https://doi.org/10.1039/C5CC01992C.

[116] Stebbins, J. F.; Sen, S. Oxide Ion Speciation in Potassium Silicate Glasses: New Limits from 17O NMR. Journal of Non-Crystalline Solids 2013, 368, 17–22. https://doi.org/10.1016/j.jnoncrysol.2013.02.024.

[117] Sawyer, R.; Nesbitt, H. W.; Bancroft, G. M.; Thibault, Y.; Secco, R. A. Spectroscopic Studies of Oxygen Speciation in Potassium Silicate Glasses and Melts. Canadian Journal of Chemistry 2015, 93 (1), 60–73. https://doi.org/10.1139/cjc-2014-0248.

[118] Roy, B.; Rosin, A.; Gerdes, T.; Schafföner, S. Revealing the Surface Structural Cause of Scratch Formation on Soda-Lime-Silica Glass. Sci Rep 2022, 12 (1), 2681. https://doi.org/10.1038/s41598-022-06649-y.

[119] Morizet, Y.; Paris, M.; Hamon, J.; La, C.; Grolleau, S.; Suzuki-Muresan, T. Predicting Iodine Solubility at High Pressure in Borosilicate Nuclear Waste Glasses Using Optical Basicity: An Experimental Study. J Mater Sci 2022, 57 (35), 16600–16618. https://doi.org/10.1007/s10853-022-07686-8.

Published

2024-12-20

How to Cite

Hu, H., Soudani, S., Hamon, J., Trcera, N., Paris, M., & Morizet, Y. (2024). Multi-Spectroscopic Investigations for Comprehensive Structural Analysis of Aluminoborosilicate Glasses: I. Integrating Raman, XPS, XAS and NMR Techniques. Glass Europe, 2, 181–211. https://doi.org/10.52825/glass-europe.v2i.1422
Received 2024-07-09
Accepted 2024-11-26
Published 2024-12-20

Funding data