Mechanical and Electrochemical Properties of Lithium Aluminoborate Glasses

Authors

DOI:

https://doi.org/10.52825/glass-europe.v2i.1382

Keywords:

Glass, Electrolyte, All-Solid-State Battery, Mechanics, Electrochemistry

Abstract

The elastic moduli and the indentation behavior of glasses from the xLi2O-5Al2O3-(95−x)B2O3 system, with x = 35, 40, and 50 were characterized. Glasses become softer and less resistant to indentation cracking as the lithium content is increased, as a result of increasing the numbers of 3-fold coordinated boron and non-bridging oxygen atoms in this composition range. In parallel, the ionic conductivity at 25 °C is increased from 3.7 10–10 to 5.5 10–8 S∙cm–1, and the activation energy, as measured in the 10 to 90 °C ranges is between 55 (50 % Li2O) and 65 (35 % Li2O) kJ∙mol–1, which shows that the ionic diffusion of lithium is easier in Li-rich compositions. Measurements of the conductivity under a compressive load aligned with the electric field revealed a mechanical-electrical coupling. The change of the activation energy with the stress is associated with an activation volume, and thus a stress sensitivity, that is increased with the lithium content.

Downloads

Download data is not yet available.

References

J. B. Goodenough and Y. Kim, “Challenges for rechargeable Li batteries,” Chem. Mater., vol. 22, no. 3, pp. 587–603, Feb. 2010, doi: https://doi.org/10.1021/cm901452z.

J. Ding, D. Ji, Y. Yue, and M. M. Smedskjaer, “Amorphous materials for lithium-ion and post-lithium-ion batteries,” Small, vol. 20, no. 5, p. 2304270, 2024, doi: https://doi.org/10.1002/smll.202304270.

L. Porz et al., “Mechanism of lithium metal penetration through inorganic solid electrolytes,” Adv. Energy Mater., vol. 7, no. 20, p. 1701003, 2017, doi: https://doi.org/10.1002/aenm.201701003.

Z. Zhang et al., “New horizons for inorganic solid state ion conductors,” Energy Environ. Sci., vol. 11, no. 8, pp. 1945–1976, 2018, doi: https://doi.org/10.1039/c8ee01053f.

T. Famprikis, P. Canepa, J. A. Dawson, M. S. Islam, and C. Masquelier, “Fundamentals of inorganic solid-state electrolytes for batteries,” Nat. Mater., vol. 18, no. 12, pp. 1278–1291, 2019, doi: https://doi.org/10.1038/s41563-019-0431-3.

A. Kato, M. Nose, M. Yamamoto, A. Sakuda, A. Hayashi, and M. Tatsumisago, “Mechanical properties of sulfide glasses in all-solid-state batteries,” J. Ceram. Soc. Jpn., vol. 126, no. 9, 2018, doi: https://doi.org/10.2109/jcersj2.18022.

Y. Daiko, A. Sakuda, T. Honma, and A. Hayashi, “Ionic conduction of glasses and their potential applications,” J. Ceram. Soc. Jpn., vol. 130, no. 8, 2022, doi: https://doi.org/10.2109/jcersj2.22035.

A. Pradel and M. Ribes, “Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching,” Solid State Ion., vol. 18–19, no. PART 1, 1986, doi: https://doi.org/10.1016/0167-2738(86)90139-6.

Y. Seino, T. Ota, K. Takada, A. Hayashi, and M. Tatsumisago, “A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries,” Energy Environ. Sci., vol. 7, no. 2, pp. 627–631, Jan. 2014, doi: https://doi.org/10.1039/C3EE41655K.

K. E. Aifantis and J. P. Dempsey, “Stable crack growth in nanostructured Li-batteries,” J. Power Sources, vol. 143, no. 1–2, pp. 203–211, 2005, doi: https://doi.org/10.1016/j.jpowsour.2004.11.037.

Z. Chen et al., “Structure dependence of fracture toughness and ionic conductivity in lithium borophosphate glassy electrolytes for all-solid-state batteries,” J. Power Sources, vol. 553, p. 232302, 2023, doi: https://doi.org/10.1016/j.jpowsour.2022.232302.

F. P. McGrogan et al., “Compliant yet brittle mechanical behavior of Li2S–P2S5 lithium-ion-conducting solid electrolyte,” Adv. Energy Mater., vol. 7, no. 12, p. 1602011, Jun. 2017, doi: https://doi.org/10.1002/aenm.201602011.

C. E. Athanasiou et al., “Rate-dependent deformation of amorphous sulfide glass electrolytes for solid-state batteries,” Cell Rep. Phys. Sci., vol. 3, no. 4, p. 100845, Apr. 2022, doi: https://doi.org/10.1016/j.xcrp.2022.100845.

V. Montouillout et al., “Ionic conductivity of lithium borate glasses and local structure probed by high resolution solid-sate NMR,” J. Non-Cryst. Solids, vol. 484, pp. 57–64, 2018, doi: https://doi.org/10.1016/j.jnoncrysol.2018.01.020.

A. Levasseur and M. Menetrier, “Borate based lithium conducting glasses,” Mater. Chem. Phys., vol. 23, no. 1–2, pp. 1–12, 1989, doi: https://doi.org/10.1016/0254-0584(89)90013-8.

A. Ruckman et al., “Lithium ion sites and their contribution to the ionic conductivity of RLi2O-B2O3 glasses with R ≤ 1.85,” Solid State Ion., vol. 359, p. 115530, 2021, doi: https://doi.org/10.1016/j.ssi.2020.115530.

S. A. Feller, W. J. Dell, and P. J. Bray, “10B NMR studies of lithium borate glasses,” J. Non-Cryst. Solids, vol. 51, no. 1, pp. 21–30, 1982, doi: https://doi.org/10.1016/0022-3093(82)90186-7.

V. P. Klyuev and B. Z. Pevzner, “The influence of aluminum oxide on the thermal expansion, glass transition temperature, and viscosity of lithium and sodium aluminoborate glasses,” Glass Phys. Chem., vol. 28, no. 4, pp. 207–220, 2002, doi: https://doi.org/10.1023/A:1019954010719.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A, vol. 32, no. 5, pp. 751–767, Sep. 1976, doi: https://doi.org/10.1107/S0567739476001551.

J.-P. Poirier, Introduction to the Physics of the Earth’s Interior. Cambridge University Press, 2000.

M. Sakai, “The Meyer hardness: A measure for plasticity?,” J. Mater. Res., vol. 14, no. 9, pp. 3630–3639, Sep. 1999, doi: https://doi.org/10.1557/JMR.1999.0490.

M. Wada, H. Furukawa, and K. Fujita, “Crack resistance of glass on Vickers indentation,” in Proc. Int. Congr. Glass, 1974, pp. 39–46.

J. R. Macdonald, “Impedance spectroscopy,” Ann. Biomed. Eng., vol. 20, pp. 289–305, 1992, doi: https://doi.org/10.1007/BF02368532.

Y. C. Hu and H. Tanaka, “Origin of the boson peak in amorphous solids,” Nat. Phys., vol. 18, no. 6, pp. 669–677, 2022, doi: https://doi.org/10.1038/s41567-022-01628-6.

M. González-Jiménez et al., “Understanding the emergence of the boson peak in molecular glasses,” Nat. Commun., vol. 14, no. 1, p. 215, 2023, doi: https://doi.org/10.1038/s41467-023-35878-6.

P. McMillan and B. Piriou, “Raman spectroscopy of calcium aluminate glasses and crystals,” J. Non-Cryst. Solids, vol. 55, no. 2, pp. 221–242, 1983, doi: https://doi.org/10.1016/0022-3093(83)90672-5.

R. K. Brow, D. R. Tallant, and G. L. Turner, “Polyhedral arrangements in lanthanum aluminoborate glasses,” J. Am. Ceram. Soc., vol. 80, no. 5, pp. 1239–1244, 1997, doi: https://doi.org/10.1111/j.1151-2916.1997.tb02970.x.

W. L. Konijnendijk and J. M. Stevels, “The Structure of borate glasses studied by Raman scattering,” J. Non-Cryst. Solids, vol. 18, no. 3, pp. 307–331, 1975, doi: https://doi.org/10.1016/0022-3093(75)90137-4.

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Adv., vol. 5, no. 83, 2015, doi: https://doi.org/10.1039/c5ra13043c.

T. To, C. R. Pedersen, C. Gamst, M. H. Andersen, L. R. Jensen, and M. M. Smedskjaer, “Mechanical properties of hydrated cesium-lithium aluminoborate glasses,” Phys. Rev. Mater., vol. 5, p. 83605, 2021, doi: https://doi.org/10.1103/PhysRevMaterials.5.083605.

K. Januchta et al., “Discovery of Ultra-Crack-Resistant Oxide Glasses with Adaptive Networks,” Chem. Mater., vol. 29, no. 14, pp. 5865–5876, Jul. 2017, doi: https://doi.org/10.1021/acs.chemmater.7b00921.

T. To et al., “Comparing the effects of Ga2O3 and Al2O3 on the structure and mechanical properties of sodium borate glasses,” J. Non-Cryst. Solids, vol. 618, 2023, doi: https://doi.org/10.1016/j.jnoncrysol.2023.122506.

T. Skopak et al., “Mixture experimental design applied to gallium-rich GaO3/2-GeO2-NaO1/2 glasses,” J. Non-Cryst. Solids, vol. 455, pp. 83–89, Jan. 2017, doi: https://doi.org/10.1016/J.JNONCRYSOL.2016.10.030.

G. Padmaja and P. Kistaiah, “Infrared and raman spectroscopic studies on alkali borate glasses: Evidence of mixed alkali effect,” J. Phys. Chem. A, vol. 113, no. 11, pp. 2397–2404, Mar. 2009, doi: https://doi.org/10.1021/JP809318E/ASSET/IMAGES/JP-2008-09318E_M005.GIF.

E. I. Kamitsos and G. D. Chryssikos, “Borate glass structure by Raman and infrared spectroscopies*,” J. Mol. Struct., vol. 247, pp. 1–16, 1991.

T. Rouxel, “What we can learn from crystals about the mechanical properties of glass,” J. Ceram. Soc. Jpn., vol. 130, no. 8, pp. 519–530, 2022, doi: https://doi.org/10.2109/jcersj2.22067.

S. S. Sørensen, H. Johra, J. C. Mauro, M. Bauchy, and M. M. Smedskjaer, “Boron anomaly in the thermal conductivity of lithium borate glasses,” Phys. Rev. Mater., vol. 3, no. 7, p. 075601, 2019, doi: https://doi.org/10.1103/PhysRevMaterials.3.075601.

T. Rouxel, “Elastic Properties and Short-to Medium-Range Order in Glasses,” J. Am. Ceram. Soc., vol. 90, no. 10, pp. 3019–3039, Oct. 2007, doi: https://doi.org/10.1111/J.1551-2916.2007.01945.X.

J. Gong, H. Miao, Z. Zhao, and Z. Guan, “Load-dependence of the measured hardness of Ti(C,N)-based cermets,” Mater. Sci. Eng., vol. 303, no. 1–2, pp. 179–186, 2001, doi: https://doi.org/10.1016/S0921-5093(00)01845-1.

O. Şahin, O. Uzun, U. Kölemen, and N. Uçar, “Dynamic hardness and reduced modulus determination on the (001) face of β-Sn single crystals by a depth sensing indentation technique,” J. Phys. Condens. Matter, vol. 19, no. 30, p. 17, Aug. 2007, doi: https://doi.org/10.1088/0953-8984/19/30/306001.

C. Hays and E. G. Kendall, “An Analysis of Knoop Microhardness,” METALLOGRAPHY, vol. 6, no. 4, pp. 275–282, 1973, doi: https://doi.org/10.1016/0026-0800(73)90053-0.

U. Strom and K. L. Ngai, “AC conductivity of Na-βAℓ2O3 from 102 Hz to 1011 Hz and from 0.02K to 600K: A generalized treatment,” Solid State Ion., vol. 5, no. C, pp. 167–170, 1981, doi: https://doi.org/10.1016/0167-2738(81)90219-8.

J. Newman and K. E. Thomas-Alyea, Electrochemical systems, 3rd edition. Wiley, Hoboken, NJ and Chichester, 2004.

Y.-R. Luo and J.-P. Cheng, Handbook of Chemistry and Physics. Taylor & Francis.

M. J. Rice and W. L. Roth, “Ionic transport in super ionic conductors: a theoretical model,” J. Solid State Chem., vol. 4, no. 2, pp. 294–310, 1972, doi: https://doi.org/10.1016/0022-4596(72)90121-1.

C. Fang et al., “Pressure-tailored lithium deposition and dissolution in lithium metal batteries,” Nat. Energy, vol. 6, no. 10, pp. 987–994, 2021, doi: https://doi.org/10.1038/s41560-021-00917-3.

J. J. Fontanella, “Pressure and temperature variation of the electrical conductivity of poly(propylene glycol) containing LiCF3SO3,” J. Chem. Phys., vol. 111, no. 15, pp. 7103–7109, Oct. 1999, doi: https://doi.org/10.1063/1.480002.

Downloads

Published

2024-07-23

How to Cite

To, T., Ladjani, I., Houizot, P., Le Coq, D., Calvez, L., Moreac, A., … Rouxel, T. (2024). Mechanical and Electrochemical Properties of Lithium Aluminoborate Glasses. Glass Europe, 2, 27–44. https://doi.org/10.52825/glass-europe.v2i.1382
Received 2024-06-18
Accepted 2024-07-08
Published 2024-07-23

Funding data