Optical Real-Time Castability Evaluation for High-Throughput Glass Melting
DOI:
https://doi.org/10.52825/glass-europe.v2i.1359Keywords:
Optical Real-Time Castability Check, High-Throughput Melting, Image AnalysisAbstract
A novel optical real-time method for evaluating the castability of glass forming melts for laboratory furnaces is presented. The method is based on the analysis of top view images of the melt surface inside the crucible during melting after being subjected to a small mechanical impulse. In this way, the melt surface is excited to oscillate. The difference in contrast between two images taken in quick succession scales with the viscosity, with a larger difference occurring at lower viscosities. The method is designed as an instrument for the in-line evaluation of the castability for a high-throughput glass melting system as part of the joint project “GlasDigital” in the framework of the German Platform Material Digital initiative but is applicable to other laboratory furnaces as well.
Downloads
References
[1] E.D. Zanotto, F.A.B. Coutinho, ”How many non-crystalline solids can be made from all the elements of the periodic table?”, J Non-Crystal. Solids, vol. 347 no.1-3, 2004, pp. 285-288, ISSN 0022-3093.
[2] W. Höland, G.H. Beall, “Applications of Glass-Ceramics” in Glass-Ceramic Technol., 2nd edition, Westerville, OH, The Ameri. Ceram. Soc., 2002, ch. 4.1 Technical Appl., pp. 252-353. DOI https://doi.org/10.1002/9781118265987.
[3] A. K. Varshneya, “Introduction” in “Fundamentals of Inorganic Glasses”, 1st edition., San Diego, CA, Academic Press, 1994, ch.1, pp. 1-11, ISBN-13: 978-0127149707.
[4] Datengetriebender Workflow für die beschleunigte Entwicklung von Glas, Contact: T. Waurischk, *https://materialdigital.de/project/4
[5] R. C. Gonzalez, R. E. Woods, “Digital Image Processing”, 4th edition. Pearson, New York, NY 10013, John Wiley &. Sons, 2018. ISBN 978-0-13-335672-4, pp. 185.
[6] A. K. Jain, Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice Hall, 1989, pp. 569, ISBN: 0133325784, 9780133325782.
[7] OpenCV – Open Computer Vision Library, Developer Intel, Willow Garage: *https://opencv.org/
[8] Recommondation ITU-R (03/11): "Studio encoding parameters of digital television for standard 4:3 and wide-screen 16:9 aspect ratios, https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.601-7-201103-I!!PDF-E.pdf
[9] OpenCV Histogram Equalization and Adaptive Histogram Equalization (CLAHE), A. Rosebrock, February 1, 2021 *https://pyimagesearch.com/2021/02/01/opencv-histogram-equalization-and-adaptive-histogram-equalization-clahe/
[10] OpenCV-Python Tutorials / Image Processing in OpenCV / Histograms in OpenCV in OpenCV – Open Computer Vision Library, Developer Intel, Willow Garage: *https://docs.opencv.org/4.x/d5/daf/tutorial_py_histogram_equalization.html
[11] Viskosität, 237 Authors, *https://de.wikipedia.org/wiki/Viskosit%C3%A4t * last date accessed:10.6.2024
[12] A. Dietzel, R. Brückner, “Ein Fixpunkt der Zähigkeit im Verarbeitungsbereich der Gläser. Schnellbestimmung des Viskositäts-Temperatur-Verlaufs“, Glastechn. Ber., vol. 30, no. 3, 1957, p.73-78,
[13] R. Brückner, G. Demharter, „Systematische Untersuchungen über die Anwendbarkeit von Penetrationsviskosimetern“, Glastechn. Ber., vol. 48, no. 1, 1975, p.12-78.
[14] G. Meerlender, „A Rotational Method for Measuring the Viscosity of Glass in the Range between Strain Point and Melting Temperatures”, Proc. 4th Intern. Congr. On Rheology, Providence 1963, Part 3, John Wiley & Sons, New York 1965
[15] A. N. Gent, “Theory of the parallel plate viscometer”, Brit. Journal Applied Phys., vol. 11, 1960, pp. 85-87
[16] M. J. Pascual, A. Duran, M. O. Prado, “A new method for determing fixed viscosity points of glass”, Phys. Chem. Glasses, vol. 45, 2005, no. 5, pp. 512-520
[17] P. U. C., Schroeder, C. M., & Kurkjian, C. R. (1988), “Determination of the viscosity of high silica glasses during fibre drawing”, Glass technology, vol. 29, no. 6, pp. 263-266.
[18] T. J. Coogan, D. O. Kazmer, “In-line rheological monitoring of fused deposition modeling.”, J. Rheol., vol. 63, no, 1, 2019, pp. 141–155, https://doi.org/10.1122/1.5054648
[19] H. Bissig, O., Büker, K., Stolt, E., Graham, L., Wales, A., Furtado, J. C. Lötters, “First comparison of inline measurements of dynamic viscosity”, in proc. 19th International Flow Measurement Conference 2022, FLOMEKO 2022. International Measurement Confederation (IMEKO).
[20] V.S.K. Prasad, K. Balasubramaniam, E. Kannan, K.L. Geisinger, „Viscosity measurements of melts at high temperatures using ultrasonic guided waves”, J of Mat. Processing Technol. Vol. 207, no. 1–3, 2008, pp- 315-320, ISSN 0924-0136, https://doi.org/10.1016/j.jmatprotec.2008.06.049.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Shravya Gogula, Hansjörg Bornhöft, Lothar Wondraczek, Marek Sierka, Andreas Diegeler, Ralf Müller, Joachim Deubener
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-07-31
Published 2024-08-28
Funding data
-
Bundesministerium für Bildung und Forschung
Grant numbers 13XP5122B