Open Electrode Thermal Poling Setup for Treating Lithium-Aluminosilicate Glass-Ceramics Using Gas Discharge
DOI:
https://doi.org/10.52825/glass-europe.v2i.1320Keywords:
Glass-Ceramics, Thermal Poling, Gas DischargeAbstract
A setup for thermal poling treatment of glass and glass-ceramic via gas discharge using an open electrode configuration was built and tested successfully. In the setup a thin Pt-wire is used as a top electrode with adjustable distance to the glass sample. The glass rests on a Pt-sheet acting as bottom electrode which again rests on transporting rolls made of alumina. The setup is implemented in a specially built furnace in which the sample is moved underneath the static wire electrode. With this setup, lithium-aluminosilicate (LAS) glass samples were thermally poled at 200 °C for 20 min, 60 min and 180 min with discharge currents ranging from 25 µA to 300 µA. Over time the process gets more unstable but without any major breakdowns. The measured crystallinity at the anode side surface of the post-poling ceramised samples shows a decrease with both treatment time and poling current (i.e. electrical field strength). This is explained with the depletion of Li from the anode side surface layer which becomes stronger with higher electrical fields and continues over time. In scanning electron microscopy (SEM) images of cross sections of the anode sides a mostly glassy layer is observed which adds to the point aforementioned. As a key result this work proved that with an open electrode setup for thermal poling treatments of LAS glasses similar results can be achieved as with a blocking setup. This opens the door to the modification of glasses and corresponding glass-ceramics in an inline and continuous process that can be used industrially.
Downloads
References
[1] D. E. Carlson, K. W. Hang, and G. F. Stockdale, ‘Electrode “Polarization” in Alkali-Containing Glasses’, J American Ceramic Society, vol. 55, no. 7, pp. 337–341, Jul. 1972, doi: 10.1111/j.1151-2916.1972.tb11305.x. DOI: https://doi.org/10.1111/j.1151-2916.1972.tb11305.x
[2] M. Dussauze et al., ‘How Does Thermal Poling Affect the Structure of Soda-Lime Glass?’, J. Phys. Chem. C, vol. 114, no. 29, pp. 12754–12759, Jul. 2010, doi: 10.1021/jp1033905. DOI: https://doi.org/10.1021/jp1033905
[3] A. Von Hippel, E. P. Gross, J. G. Jelatis, and M. Geller, ‘Photocurrent, Space-Charge Buildup, and Field Emission in Alkali Halide Crystals’, Phys. Rev., vol. 91, no. 3, pp. 568–579, Aug. 1953, doi: 10.1103/PhysRev.91.568. DOI: https://doi.org/10.1103/PhysRev.91.568
[4] M. Chazot et al., ‘Enhancement of mechanical properties and chemical durability of Soda‐lime silicate glasses treated by DC gas discharges’, J. Am. Ceram. Soc., vol. 104, no. 1, pp. 157–166, Jan. 2021, doi: 10.1111/jace.17438. DOI: https://doi.org/10.1111/jace.17438
[5] J. Luo et al., ‘Chemical structure and mechanical properties of soda lime silica glass surfaces treated by thermal poling in inert and reactive ambient gases’, J Am Ceram Soc, vol. 101, no. 7, pp. 2951–2964, Jul. 2018, doi: 10.1111/jace.15476. DOI: https://doi.org/10.1111/jace.15476
[6] H. An and S. Fleming, ‘Second-order optical nonlinearity and accompanying near-surface structural modifications in thermally poled soda-lime silicate glasses’, J. Opt. Soc. Am. B, vol. 23, no. 11, p. 2303, Nov. 2006, doi: 10.1364/JOSAB.23.002303. DOI: https://doi.org/10.1364/JOSAB.23.002303
[7] A. A. Lipovskii, A. I. Morozova, and D. K. Tagantsev, ‘Giant Discharge Current in Ther-mally Poled Silicate Glasses’, J. Phys. Chem. C, vol. 120, no. 40, pp. 23129–23135, Oct. 2016, doi: 10.1021/acs.jpcc.6b07144. DOI: https://doi.org/10.1021/acs.jpcc.6b07144
[8] A. V. Redkov, V. G. Melehin, and A. A. Lipovskii, ‘How Does Thermal Poling Produce Interstitial Molecular Oxygen in Silicate Glasses?’, J. Phys. Chem. C, vol. 119, no. 30, pp. 17298–17307, Jul. 2015, doi: 10.1021/acs.jpcc.5b04513. DOI: https://doi.org/10.1021/acs.jpcc.5b04513
[9] J. Luo, H. He, N. J. Podraza, L. Qian, C. G. Pantano, and S. H. Kim, ‘Thermal Poling of Soda-Lime Silica Glass with Nonblocking Electrodes-Part 1: Effects of Sodium Ion Mi-gration and Water Ingress on Glass Surface Structure’, J. Am. Ceram. Soc., vol. 99, no. 4, pp. 1221–1230, Apr. 2016, doi: 10.1111/jace.14081. DOI: https://doi.org/10.1111/jace.14081
[10] H. Ikeda et al., ‘Generation of alkali-free and high-proton concentration layer in a soda lime glass using non-contact corona discharge’, Journal of Applied Physics, vol. 114, no. 6, p. 063303, Aug. 2013, doi: 10.1063/1.4817760. DOI: https://doi.org/10.1063/1.4817760
[11] A. Okada, K. Ishii, K. Mito, and K. Sasaki, ‘Phase‐matched second‐harmonic genera-tion in novel corona poled glass waveguides’, Appl. Phys. Lett., vol. 60, no. 23, pp. 2853–2855, Jun. 1992, doi: 10.1063/1.106845. DOI: https://doi.org/10.1063/1.106845
[12] A. Okada, K. Ishii, K. Mito, and K. Sasaki, ‘Second‐order optical nonlinearity in corona‐poled glass films’, Journal of Applied Physics, vol. 74, no. 1, pp. 531–535, Jul. 1993, doi: 10.1063/1.355265. DOI: https://doi.org/10.1063/1.355265
[13] S. Horinouchi, H. Imai, G. J. Zhang, K. Mito, and K. Sasaki, ‘Optical quadratic nonline-arity in multilayer corona‐poled glass films’, Appl. Phys. Lett., vol. 68, no. 25, pp. 3552–3554, Jun. 1996, doi: 10.1063/1.116634. DOI: https://doi.org/10.1063/1.116634
[14] S. Ettori, J.-C. Peraud, and J. Barton, ‘Deionisation of glass by corona discharge’, EP0237431B1 [Online]. Available: https://patents.google.com/patent/EP0237431B1/en
[15] M. Sander, P. Engelmann, P. Jacobs, and C. Roos, ‘Controlled surface crystallization of lithium‐zinc‐alumosilicate glass‐ceramics using thermal poling’, J Am Ceram Soc, vol. 105, no. 5, pp. 3279–3290, May 2022, doi: 10.1111/jace.18301. DOI: https://doi.org/10.1111/jace.18301
[15] M. Sander, ‘Structure and properties of thermally poled lithium alumosilicate glasses and glass-ceramics’, Ph.D. dissertation, Dept. of Glass and Glass-Ceramic, RWTH Aa-chen University, Aachen, Germany, 2023.
[17] N. Ikutame et al., ‘Low-temperature fabrication of fine structures on glass using electri-cal nanoimprint and chemical etching’, Journal of Applied Physics, vol. 114, no. 8, p. 083514, Aug. 2013, doi: 10.1063/1.4819321. DOI: https://doi.org/10.1063/1.4819321
[18] W. Margulis and F. Laurell, ‘Interferometric study of poled glass under etching’, Opt. Lett., vol. 21, no. 21, p. 1786, Nov. 1996, doi: 10.1364/OL.21.001786. DOI: https://doi.org/10.1364/OL.21.001786
[19] A. Lepicard et al., ‘Surface Reactivity Control of a Borosilicate Glass Using Thermal Poling’, J. Phys. Chem. C, vol. 119, no. 40, pp. 22999–23007, Oct. 2015, doi: 10.1021/acs.jpcc.5b07139. DOI: https://doi.org/10.1021/acs.jpcc.5b07139
[20] A. N. Kamenskii, I. V. Reduto, V. D. Petrikov, and A. A. Lipovskii, ‘Effective diffraction gratings via acidic etching of thermally poled glass’, Optical Materials, vol. 62, pp. 250–254, Dec. 2016, doi: 10.1016/j.optmat.2016.09.074. DOI: https://doi.org/10.1016/j.optmat.2016.09.074
[21] H. He, J. Luo, L. Qian, C. G. Pantano, and S. H. Kim, ‘Thermal Poling of Soda-Lime Silica Glass with Nonblocking Electrodes-Part 2: Effects on Mechanical and Mechano-chemical Properties’, J. Am. Ceram. Soc., vol. 99, no. 4, pp. 1231–1238, Apr. 2016, doi: 10.1111/jace.14080. DOI: https://doi.org/10.1111/jace.14080
[22] E. C. Ziemath, V. D. Araújo, and C. A. Escanhoela, ‘Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass’, Journal of Ap-plied Physics, vol. 104, no. 5, p. 054912, Sep. 2008, doi: 10.1063/1.2975996. DOI: https://doi.org/10.1063/1.2975996
[23] M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, ‘Refractive index distribution in the non-linear optical layer of thermally poled oxide glasses’, Chemical Physics Let-ters, vol. 470, no. 1–3, pp. 63–66, Feb. 2009, doi: 10.1016/j.cplett.2009.01.007. DOI: https://doi.org/10.1016/j.cplett.2009.01.007
[24] W. Margulis and F. Laurell, ‘Fabrication of waveguides in glasses by a poling proce-dure’, Applied Physics Letters, vol. 71, no. 17, pp. 2418–2420, Oct. 1997, doi: 10.1063/1.120079. DOI: https://doi.org/10.1063/1.120079
[25] A. Canagasabey, C. Corbari, Z. Zhang, P. G. Kazansky, and M. Ibsen, ‘Broadly tunable second-harmonic generation in periodically poled silica fibers’, Opt. Lett., vol. 32, no. 13, p. 1863, Jul. 2007, doi: 10.1364/OL.32.001863. DOI: https://doi.org/10.1364/OL.32.001863
[26] P. St. J. Russell, C. N. Pannell, P. G. Kazansky, and L. Dong, ‘Pockels effect in ther-mally poled silica optical fibres’, Electronics Letters, vol. 31, no. 1, pp. 62–63, Jan. 1995, doi: 10.1049/el:19950036. DOI: https://doi.org/10.1049/el:19950036
[27] B. H. O’Connor and M. D. Raven, ‘Application of the Rietveld Refinement Procedure in Assaying Powdered Mixtures’, Powder Diffr., vol. 3, no. 1, pp. 2–6, Mar. 1988, doi: 10.1017/S0885715600013026. DOI: https://doi.org/10.1017/S0885715600013026
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jonas Hildebrand, Christian Roos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-08-02
Published 2024-08-09