Understanding the Influence of Copper on the Color of Glasses and Glazes: Copper Environment and Redox

Authors

DOI:

https://doi.org/10.52825/glass-europe.v2i.1274

Keywords:

Copper, Glass, Glaze, Optical Absorption, XANES, EPR

Abstract

This study explores the influence of copper on the color properties of lead and aluminosilicate glasses by using optical and electron paramagnetic resonance (EPR) spectroscopies. Optical absorption spectra unveil distinct UV absorption characteristics in blue and green compounds, attributed to Cu+ ions, with notable variations depending on glass composition. EPR quantification of copper oxidation states reveals correlations with color variations, particularly evident in UV absorption shifts towards green colors at lower Cu2+ ratios. Redox analysis elucidates color differences in identical compositions subjected to different melting temperatures. Additionally, XANES spectroscopy highlights the role of copper proportions in modulating redox balance. Cu2+ site distortions, assessed through Gaussian fitting of optical absorption spectra and EPR simulations, present challenges in determining the impact of site geometry on color. The presence of copper clusters, inferred from broad absorption bands possibly due to Cu2+-Cu+ intervalence charge transfer (IVCT), suggests their contribution to coloration. The apparition of this IVCT contribution appears as the main reason for the sift in coloration from blue to green as the CuO content increases. Overall, the study emphasizes the multifaceted relationships between copper redox state, site distortions, and clustering phenomena in influencing color perceptions in silicate glasses.

Downloads

Download data is not yet available.

References

[1] B.-S. Bae and M. C. Weinberg, “Optical absorption of copper phosphate glasses in the visible spectrum,” Journal of Non-Crystalline Solids, vol. 168, pp. 223–231, 1994, doi: 10.1016/0022-3093(94)90333-6.

[2] S. Banerjee and A. Paul, "Chemical determination of copper, copper(I) and copper(lI) in a borate glass,” Analytica Chimica Acta, vol. 68, pp. 226-230, 1974.

[3] G. Calas, N. Capobianco, and L. Galoisy, “Spectroscopic properties of alkali borate glasses containing Cu2+,” Journal of Non-Crystalline Solids, vol. 591, 121711, 2022, doi: 10.1016/j.jnoncrysol.2022.121711.

[4] G. Calas, L. Galoisy, and L. Cormier, “The color of glass,” in Encyclopedia of Glass Science, Technology, History, and Culture, 1st ed., P. Richet, R. Conradt, A. Takada, J. Dyon (Eds.), Wiley, 2021, ch. 6.2, pp. 677-691, doi: 10.1002/9781118801017.ch6.2.

[5] S. La Delfa, E. Ciliberto, and L. Pirri, “Behaviour of copper and lead as chromophore elements in sodium silicate glasses,” Journal of Cultural Heritage, vol. 9, e117–e122, 2008, doi: 10.1016/j.culher.2008.07.006.

[6] A. Silvestri, S. Tonietto, F. D’Acapito, and G. Molin, “The role of copper on colour of palaeo-Christian glass mosaic tesserae: An XAS study,” Journal of Cultural Heritage, vol. 13 , pp. 137–144, 2012, doi: 10.1016/j.culher.2011.08.002.

[7] T. Volotinen, “Mathematical description of absorbance spectra for Fe and Cu doped soda-lime-silica glasses,” PhD Thesis, University of Sheffield, 2007.

[8] G. Artioli, I. Angelini, and A. Polla, “Crystals and phase transitions in protohistoric glass materials,” Phase Transitions, vol. 81, pp. 233-252, 2008, doi: 10.1080/01411590701514409.

[9] G. Dardeniz, T. Yıldırım, C. Yıldırım, and E. Çiftçi, “Techniques of blue, green, and white faience bead production used at the early Bronze Age central Anatolian site of Re-suloğlu (Turkey),” Archaeometry, vol. 63, pp. 327-342, 2021, doi: 10.1111/arcm.12606.

[10] A. S. Rodler, S. Klein, G. Artioli, and C. Brøns, “Probing the provenance of archaeologi-cal glaze colorants: Polychrome faunal reliefs of the Ishtar Gate and the Processional Way of Babylon: Probing the provenance of archaeological glaze colorants,” Archae-ometry, vol. 61, pp. 837-855, 2019, doi: 10.1111/arcm.12455.

[11] I. C. Freestone, C. P. Stapleton, and V. Rigby, “The production of red glass and enamel in the Late Iron Age, Roman and Byzantine periods“, in Through a Glass Brightly. Stud-ies in Byzantine and Medieval Art and Archaeology Presented to David Buckton, C. Entwistl (ed.), Oxbow Books, Oxford, pp. 142–154, 2003.

[12] C. Noirot, “Colorations rouge et orange de verres et glaçures sur céramique : étude du redox et de la cristallisation du cuivre,” PhD Thesis, Sorbonne University, 2022.

[13] C. Noirot, L. Cormier, N. Schibille, N. Menguy, N. Trcera, and E. Fonda, “Comparative investigation of red and orange Roman tesserae: Role of Cu and Pb in colour for-mation,” Heritage, vol. 5, pp. 2628-2645, 2022, doi: 10.3390/heritage5030137.

[14] N. Capobianco, “La couleur des vitraux au XIIIe siècle - Étude chimique et spec-troscopique,” PhD Thesis, Sorbonne University, 2018.

[15] E. E. Khawaja, M. N. Khan, A. A. Kutub, and C. A. Hogarth, “Some electrical and opti-cal properties of copper-sodium-phosphate glasses,” International Journal of Electron-ics, vol. 58, pp. 471-475, 1985, doi: 10.1080/00207218508939043.

[16] L. Verger, O. Dargaud, M. Chassé, N. Trcera, G. Rousse, and L. Cormier, “Synthesis, properties and uses of chromium-based pigments from the Manufacture de Sèvres,” Journal of Cultural Heritage, vol. 30, pp. 26-33, 2018, doi: 10.1016/j.culher.2017.09.012.

[17] L. Verger, O. Dargaud, N. Menguy, D. Troadec, and L. Cormier, “Interaction between Cr-bearing pigments and transparent glaze: A transmission electron microscopy study,” Journal of Non-Crystalline Solids, vol. 459, pp. 184-191, 2017, doi: 10.1016/j.jnoncrysol.2017.01.016.

[18] A. d’Albis, “Traité de la porcelaine de Sèvres,” Faton, Dijon, France, 2003.

[19] S. I. Andronenko, R. R. Andronenko, A. V. Vasil’ev, and O. A. Zagrebel’nyi, “Local symmetry of Cu2+ ions in sodium silicate glasses from data of EPR spectroscopy,” Glass Physics and Chemistry, vol. 30, pp. 230-235, 2004, doi: 10.1023/B:GPAC.0000032224.23793.8c.

[20] A. Durán and J. M. Fernández Navarro, “The colouring of glass by Cu2+ ions,” Physics and Chemistry of Glasses, vol. 26, pp. 126-131, 1985.

[21] L. Grund Bäck, S. Ali, S. Karlsson, L. Wondraczek, and B. Jonson, “X-ray and UV-Vis-NIR absorption spectroscopy studies of the Cu(I) and Cu(II) coordination environments in mixed alkali-lime-silicate glasses,” Journal of Non-Crystalline Solids: X, vol. 3, pp. 100029, 2019, doi: 10.1016/j.nocx.2019.100029.

[22] K. Kamiya, K. Okasaka, M. Wada, H. Nasu, and T. Yoko, "Extended X-ray absorption fine structure (EXAFS) study on the local environment around copper in low thermal expansion copper aluminosilicate glasses,” Journal of the American Ceramic Society, vol. 75, pp. 477-478, 1992, doi: 10.1111/j.1151-2916.1992.tb08205.x.

[23] C. Maurizio, F. d’Acapito, M. Benfatto, S. Mobilio, E. Cattaruzza, and F. Gonella, "Local coordination geometry around Cu+ and Cu2+ ions in silicate glasses: an X-ray absorp-tion near edge structure investigation,” The European Physical Journal B, vol. 14, pp. 211-216, 2000, doi: 10.1007/s100510050122.

[24] A. Santagostino Barbone, E. Gliozzo, F. D’Acapito, I. Memmi Turbanti, M. Turchiano, and G. Volpe, "The sectilia panels of Faragola (Ascoli-Satriano, soutern Italy): a multi-analytical study of the red, orange and yellow glass slabs,” Archaeometry, vol. 50, pp. 451-473, 2008, doi: 10.1111/j.1475-4754.2007.00341.x.

[25] R. Debnath and S. K. Das, “Site-dependent luminescence of Cu+ ions in silica glass,” Chemical Physics Letters, vol. 155, pp. 52-58, 1989, doi: 10.1016/S0009-2614(89)87359-2.

[26] J. Lee, T. Yano, S. Shibata, A. Nukui, and M. Yamane, "EXAFS study on the local envi-ronment of Cu+ ions in glasses of the Cu2O-Na2O-Al2O3-SiO2 system prepared by Cu+/Na+ ion exchange,” Journal of Non-Crystalline Solids, vol. 277, pp. 155-161, 2000, doi: 10.1016/S0022-3093(00)00330-6.

[27] J. Kaufmann and C. Rüssel, "Diffusion of copper in soda-silicate and soda-lime-silicate melts,” Journal of Non-Crystalline Solids, vol. 356, pp. 1158-1162, 2010, doi: 10.1016/j.jnoncrysol.2010.03.015.

[28] R. G. Burns, "Mineralogical applications of crystal field theory,” 2nd ed., Cambridge University Press, 1993, doi: 10.1017/CBO9780511524899.

[29] M. Cable and Z. D. Xiang, "The optical spectra of copper ions in alkali-lime-silica glass-es,” Physics and Chemistry of Glasses, vol. 33, pp. 154-160, 1992.

[30] M. O. J. Y. Hunault and C. Loisel, "Looking through model medieval green glasses: From color to recipe,” Int. J. Appl. Glass Sci., vol. 11, pp. 463-470, 2020, doi: 10.1111/ijag.15134.

[31] Z. Zhou, A. Navrotsky, and D. S. McClure, "Oxidation states of copper in lead borate glass,” Physics and Chemistry of Glasses, vol. 34, pp. 251-254, 1993.

[32] L. Grund Bäck, "Redox reactions and structure - properties relations in mixed alka-li/alkaline earth silicate glasses - The role of antimony oxides during the fining process - A structural study of copper(I) and copper(II),” PhD Thesis, Linnaeus University, 2015.

[33] Y. Fujimoto and M. Nakatsuka, "Spectroscopic properties and quantum yield of Cu-doped SiO2 glass,” Journal of Luminescence, vol. 75, pp. 213-219, 1997, doi: 10.1016/S0022-2313(97)00121-X.

[34] S. Gómez, I. Urra, R. Valiente, and F. Rodríguez, "Spectroscopic study of Cu2+/Cu+ doubly doped and highly transmitting glasses for solar spectral transformation,” Solar Energy Materials and Solar Cells, vol. 95, pp. 2018-2022, 2011, doi: 10.1016/j.solmat.2010.07.022.

[35] K. Tanaka, T. Yano, S. Shibata, M. Yamane, and S. Inoue, "Cu+-doped CaO-P2O5 glasses for lasers,” Journal of Non-Crystalline Solids, vol. 178, pp. 9-14, 1994, doi: 10.1016/0022-3093(94)90258-5.

[36] J. C. Zhang, B. Moine, C. Pedrini, C. Parent, and G. Flem, "Optical spectroscopy of monovalent copper-doped borate glasses,” Journal of Physics and Chemistry of Solids, vol. 51, pp. 933-939, 1990, doi: 10.1016/0022-3697(90)90035-E.

[37] A. N. Pestryakov, V. P. Petranovskii, A. Kryazhov, O. Ozhereliev, N. Pfänder, and A. Knop-Gericke, "Study of copper nanoparticles formation on supports of different nature by UV–Vis diffuse reflectance spectroscopy,” Chemical Physics Letters, vol. 385, pp. 173-176, 2004, doi: 10.1016/j.cplett.2003.12.077.

[38] M. Inoue, H. Grijalva, M. B. Inoue, and Q. Fernando, "Spectroscopic and magnetic properties of Chevreul’s salt, a mixed valence copper sulfite Cu3(SO3)2·2H2O,” Inor-ganica Chimica Acta, vol. 295, pp. 125-127, 1999, doi: 10.1016/S0020-1693(99)00333-3.

[39] L. A. da Silva, J. B. de Andrade, and H. E. Toma, “Electronic spectra of Chevreul’s salts,” J. Braz. Chem. Soc., vol. 13, pp. 624-628, 2002, doi: 10.1590/S0103-50532002000500013.

[40] B. Bae and M. C. Weinberg, "Ultraviolet optical absorptions of semiconducting copper phosphate glasses,” Journal of Applied Physics, vol. 73, pp. 7760-7766, 1993, doi: 10.1063/1.353975.

[41] J. Simonetti and D. S. McClure, "The 3 d → 4 p transitions of Cu+ in LiCl and of transi-tion-metal ions in crystals,” Phys. Rev. B, vol. 16, pp. 3887-3892, 1977, doi: 10.1103/PhysRevB.16.3887.

[42] P. Boutinaud, C. Parent, G.L. Flem, C. Pedrini, and B. Moine, "Spectroscopic investiga-tion of the copper (I)-rich phosphate CuZr2(PO4)3,” J. Phys.: Condens. Matter, vol. 4, pp. 3031-3042, 1992, doi: 10.1088/0953-8984/4/11/026.

[43] Z. Y. Yao, D. Möncke, E. I. Kamitsos, P. Houizot, F. Célarié, T. Rouxel, and L. Wondraczek, "Structure and mechanical properties of copper–lead and copper–zinc bo-rate glasses,” Journal of Non-Crystalline Solids, vol. 435, pp. 55-68, 2016, doi: 10.1016/j.jnoncrysol.2015.12.005.

[44] L. Galoisy and G. Calas, "The unique speciation of iron in calc-alkaline obsidians,” Chemical Geology, vol. 559, pp. 119925, 2021, doi: 10.1016/j.chemgeo.2020.119925.

[45] S. M. Mattson and G. R. Rossman, "Identifying characteristics of charge transfer transi-tions in minerals,” Phys. Chem. Minerals, vol. 14, pp. 94-99, 1987, doi: 10.1007/BF00311152.

[46] M. Cable and Z. D. Xiang, "Cuprous-cupric equilibrium in soda-lime-silica glasses melt-ed in air,” Physics and Chemistry of Glasses, vol. 30, pp. 237-242, 1989.

[47] A. Durán and F.J. Valle, "Analysis of the different states of oxidation of copper in glass-es: redox equilibrium,” Glass Technol., vol. 26, pp. 179-185, 1985.

[48] J. A. Jiménez, "Absorption spectroscopy analysis of calcium-phosphate glasses highly doped with monovalent copper,” ChemPhysChem, vol. 17, pp. 1642-1649, 2016, doi: 10.1002/cphc.201600026.

[49] J. Kaufmann and C. Rüssel, "Redox behavior and diffusion of copper in soda-lime-silica melts,” Journal of Non-Crystalline Solids, vol. 354, pp. 4614-4619, 2008, doi: 10.1016/j.jnoncrysol.2008.05.046.

[50] H. D. Schreiber, B. K. Kochanowski, C. W. Schreiber, A. B. Morgan, M. T. Coolbaugh, and T. G. Dunlap, "Compositional dependence of redox equilibria in sodium silicate glasses,” Journal of Non-Crystalline Solids, vol. 177, pp. 340-346, 1994, doi: 10.1016/0022-3093(94)90548-7.

[51] F. G. K. Baucke and J. A. Duffy, "The effect of basicity on redox equilibria in molten glasses,” Physics and Chemistry of Glasses, vol. 32, pp. 211-218, 1991.

[52] S. P. Singh, G. Prasad, and P. Nath, "Kinetic study of Cu+-Cu2+ equilibrium in sodium Na2O-Al2O3-B2O3 glass,” Journal of the American Ceramic Society, vol. 61, pp. 377-379, 1978, doi: 10.1111/j.1151-2916.1978.tb09340.x.

[53] S. P. Singh and A. Kumar, "Molar extinction coefficients of the cupric ion in silicate glasses,” Journal of Materials Science, vol. 30, pp. 2999-3004, 1995, doi: 10.1007/BF00349674.

[54] M. Maggetti and A. D’Albis, "Phase and compositional analysis of a Sèvres soft paste porcelain plate from 1781, with a review of early porcelain techniques,” European Jour-nal of Mineralogy, vol. 29, pp. 347-367, 2017, doi: 10.1127/ejm/2017/0029-2627.

[55] P. Kubelka and F. Munk, "Ein beitrag zur pptik der darbanstriche,” Z. Techn. Phys., vol. 12, pp. 593-601, 1931.

[56] G. R. Eaton, S. S. Eaton, D. P. Barr, and R. T. Weber, "Quantitative EPR“, Springer Vienna, Vienna, 2010, doi: 10.1007/978-3-211-92948-3.

[57] E. Fonda, A. Rochet, M. Ribbens, L. Barthe, S. Belin, and V. Briois, "The SAMBA quick-EXAFS monochromator: XAS with edge jumping,” Journal of Synchrotron Radia-tion, vol. 19, pp. 417-424, 2012, doi: 10.1107/S0909049512009703.

[58] J. A. Bearden and A. F. Burr, "Reevaluation of X-Ray atomic energy levels,” Rev. Mod. Phys., vol. 39, pp. 125-142, 1967, doi: 10.1103/RevModPhys.39.125.

[59] B. Ravel and M. Newville, "ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT,” Journal of Synchrotron Radiation, vol. 12, pp. 537-541, 2004, doi: 10.1107/S0909049505012719.

[60] D. Vantelon, N. Trcera, D. Roy, T. Moreno, D. Mailly, S. Guilet, E. Metchalkov, F. Del-motte, B. Lassalle, P. Lagarde, and A.-M. Flank, "The LUCIA beamline at SOLEIL,” Journal of Synchrotron Radiation, vol. 23, pp. 635-640, 2016, doi: 10.1107/S1600577516000746.

[61] P. Thakur, V. Bisogni, J.C. Cezar, N. B. Brookes, G. Ghiringhelli, S. Gautam, K. H. Chae, M. Subramanian, R. Jayavel, and K. Asokan, "Electronic structure of Cu-doped ZnO thin films by x-ray absorption, magnetic circular dichroism, and resonant inelastic x-ray scattering,” Journal of Applied Physics, vol. 107, pp. 103915, 2010, doi: 10.1063/1.3372758.

[62] S. Stoll and A. Schweiger, "EasySpin, a comprehensive software package for spectral simulation and analysis in EPR,” Journal of Magnetic Resonance, vol. 178, pp. 42-55, 2006, doi: 10.1016/j.jmr.2005.08.013.

[63] R. P. Sreekanth Chakradhar, A. Murali, and J. L. Rao, “Electron paramagnetic reso-nance and optical absorption studies of Cu2+ ions in alkali barium borate glasses,” Journal of Alloys and Compounds, vol. 265, pp. 29-37, 1998, doi: 10.1016/S0925-8388(97)00437-4.

[64] T. H. Noh and E. Le Shim, "Study of CuO content on physical and structural properties of Li2O-B2O3-CuO glasses using electron paramagnetic resonance,” Journal of Non-Crystalline Solids, vol. 474, pp. 37-42, 2017, doi: 10.1016/j.jnoncrysol.2017.08.021.

[65] I. Ardelean, S. Cora, and D. Rusu, "EPR and FT-IR spectroscopic studies of Bi2O3-B2O3-CuO glasses,” Physica B: Condensed Matter, vol. 403, pp. 3682-3685, 2008, doi: 10.1016/j.physb.2008.06.016.

[66] I. Ardelean, O. Cozar, S. Filip, V. Pop, and I. Cenan, "EPR and magnetic susceptibility studies of Cu2+ ions in Bi2O3·GeO2 glasses,” Solid State Communications, vol. 100, pp. 609-613, 1996, doi: 10.1016/0038-1098(96)00472-3.

[67] F. Ciorcas, S. K. Mendiratta, I. Ardelean, and M. A. Valente, "Structural and magnetic studies of CuO-TeO2 and CuO-TeO2-B2O3 glasses,” Eur. Phys. J. B, vol. 20, pp. 235-240, 2001, doi: 10.1007/PL00022985.

[68] O. Cozar and I. Ardelean, "The local symmetry of Cu2+ ions in phosphate glasses,” Journal of Non-Crystalline Solids, vol. 92, pp. 278-281, 1987, doi: 10.1016/S0022-3093(87)80045-5.

[69] A. Dehelean, A. Popa, S. Rada, and E. Culea, "EPR and magnetic characterization of Fe2O3-TeO2 and CuO-TeO2 glasses obtained by melt quenching and sol–gel process-es,” Journal of Magnetism and Magnetic Materials, vol. 381, pp. 131-137, 2015, doi: 10.1016/j.jmmm.2014.12.074.

[70] P. Bertrand, "La spectroscopie de résonance paramagnétique électronique: applica-tions,” EDP sciences, Les Ulis, 2014.

[71] R. G. Burns, "Intervalence transitions in mixed valence minerals of iron and titanium,” Annu. Rev. Earth Planet. Sci., vol. 9, pp. 345-383, 1981, doi: 10.1146/annurev.ea.09.050181.002021.

[72] B. Scott and R. Willett, "Crystal structure and electronic spectroscopy of bis(hydrazinium) hexachlorotricuprate(2I,II): a copper(I)-copper(II) mixed-valence sys-tem exhibiting intervalence charge transfer,” Inorg. Chem., vol. 30, pp. 110-113, 1991, doi: 10.1021/ic00001a020.

[73] P. Kierkegaard, B. Nyberg, "The crystal structure of Cu2SO3.CuSO3.2H2O,” Acta Chem. Scand., vol. 19, pp. 2189-2199, 1965, doi: 10.3891/acta.chem.scand.19-2189.

[74] H. Hosono, H. Kawazoe, and T. Kanazawa, "ESR and optical absorption of cupric ion in borate glasses,” Journal of Non-Crystalline Solids, vol. 34, pp. 339-356, 1979, doi; 10.1016/0022-3093(79)90021-8.

[75] L. Cormier, L. Galoisy, G. Lelong, and G. Calas, "From nanoscale heterogeneities to nanolites: cation clustering in glasses,” Comptes Rendus. Physique, vol. 24, pp. 199-214, 2023, doi: 10.5802/crphys.150.

Published

2024-08-23

How to Cite

Cormier, L., & Noirot , C. (2024). Understanding the Influence of Copper on the Color of Glasses and Glazes: Copper Environment and Redox. Glass Europe, 2, 55–82. https://doi.org/10.52825/glass-europe.v2i.1274
Received 2024-04-12
Accepted 2024-08-05
Published 2024-08-23