Overview of the Precipitates in a Ground-Coat Vitreous Enamel Using Analytical TEM
DOI:
https://doi.org/10.52825/glass-europe.v2i.1269Keywords:
Vitreous Enamel, Metal-Glass Interface, Precipitates, TEM, STEM-EDXSAbstract
Precipitates in the ground-coat vitreous enamel, which form when the dried coating is fired and cooled on sheet steel, are essential for the function of the enamelling. They lead to an interlocked metal-glass interface and are triggered by redox-driven processes in a glass layer saturated with iron. Using analytical transmission electron microscopy, it is shown that alloys of the Fe-Co-Ni-Cu system not only precipitate near the interface, where they contribute to adhesion through an interlocking interface, but also form nanocrystallites that are finely distributed in the enamelled glass to a depth determined by the diffusivity of Fe2+ (30 μm after four minutes of firing) and probably contribute to the toughening of this glass layer. The saturation with iron also prevents the segregation of the glass flux and opacifier calcium fluoride, which only occurs far from the interface in the chemically unmodified base glass. At the metal-glass interface, however, phosphorus traces diffuse from the steel and precipitates in the form of calcium phosphate needles that grow into the enamelled glass.
Downloads
References
[1] S. Rossi, F. Russo, and M. Calovi, “Durability of vitreous enamel coatings and their resistance to abrasion, chemicals, and corrosion: a review”, J. Coat. Technol. Res. vol. 18, pp. 39–52, 2021, doi: https://doi.org/10.1007/s11998-020-00415-3.
[2] S. Hoskins and E. Turrell, “Digital print technologies and their relation to vitreous enamel on metal for the visual artist”, in: NIP & Digital Fabrication Conf., Soc. Imaging Sci. Technol., 2006, pp. 316–320.
[3] H. Schaarschuh, “Ueber die Haftung von Blechgrundemails“, Glashütte, vol. 63, pp. 811–819, 1933.
[4] A. Dietzel and K. Meures, Sprechsaal, vol. 66, pp. 647–652, 1933.
[5] K. Kautz, “Further data on enamel adherence”, J. Am. Ceram. Soc., vol. 47, pp. 198–201, 1936, doi: https://doi.org/10.1111/j.1151-2916.1936.tb19804.x.
[6] B. W. King, H .P. Tripp, and W. H. Duckworth, “Nature of adherence of porcelain enamels to metals”, J. Am. Ceram. Soc., vol. 42, pp. 504–525, 1959, doi: https://doi.org/10.1111/j.1151-2916.1959.tb13567.x.
[7] J. Berk and J. de Jong, “On the adherence of porcelain enamel to sheet steel”, J. Am. Ceram. Soc., vol. 41, pp. 287–293, 1958, doi: https://doi.org/10.1111/j.1151-2916.1958.tb12918.x.
[8] A. Zucchelli, M. Dignatici, M. Montorsi, R. Carlotti, C. Siligardi, “Characterization of vitreous enamel–steel interface by using hot stage ESEM and nano-indentation techniques”, J. Europ. Ceram. Soc., vol. 32, pp. 2243–2251, 2012, doi: https://doi.org/10.1016/j.jeurceramsoc.2012.03.008.
[9] S. Rossi, F. Russo, V. Fontanari, and A, Compagnoni, “Innovative enamel coatings with improved mechanical properties by graphene and stainless steel addition”, Procs. 25th Int. Enamellers Congress, International Enamellers Institute (IEI), Japan Enamel Association (JEA) and Tomatec Co. Ltd. (Japan), Kyoto, 2023, pp. 1–7.
[10] S. Pieters, C. Myers, and K. Lips, “A new horizon direct-on light colours”, Procs. 25th Int. Enamellers Congress, International Enamellers Institute (IEI), Japan Enamel Association (JEA) and Tomatec Co. Ltd. (Japan), Kyoto, 2023, pp. 1–7.
[11] A. H. Dietzel, ”Emaillierung – Wissenschaftliche Grundlagen und Grundzüge der Technologie”, Springer-Verlag, Berlin, 1981, pp.119–128, ISBN 3-540-10453-4.
[12] M. M. Eltabey H. A. Othman, S. E. Ibrahim, L. M. Sharaf El-Deen, and M. M. Elkholy, “Structural, electrical and magnetic properties of high iron content sodium borosilicate glass”, IOSR J. Appl. Phys., vol. 8, pp. 95–102, 2016, doi: https://doi.org/10.9790/4861-08020195102.
[13] S. Striepe, H. Bornhöft, J. Deubener, and J. Wendel, “Fe-Co-Ni-Cu-microalloy precipitation enabling enamel adherence”, J. Appl. Ceram. Technol., vol. 13, pp. 191–199, 2016, doi: https://doi.org/10.1111/ijac.12435.
[14] J. Cha, J. Shin, J. Bae, D. Jeong, and B. Ryu, “Compositional dependence of structure and wetting properties of CoO-doped silicate glass for porcelain enamel”, J. Ceram. Soc. Japan, vol. 126, pp. 469–474, 2018, doi: http://doi.org/10.2109/jcersj2.18026.
[15] K. Chen, M. Chen, Q. Wang, S. Zhu, and F. Wang, “Micro-alloys precipitation in NiO- and CoO-bearing enamel coatings and their effect on adherence of enamel/steel”, Int. J. Appl. Glass Sci., vol. 9, pp. 70–84, 2018, doi: https://doi.org/10.1111/ijag.12284.
[16] W. J. Nisbet, G. W. Lorimer, С. Sherhod, and М. J. Stowell, “Dual phase vitreous enamels, part 3 – Transmission electron microscopy of enamel / substrate interface”, Mater. Sci. Technol., vol. 6, pp. 182–185, 1990, doi: https://doi.org/10.1179/mst.1990.6.2.182.
[17] H. Scholze, “Glas – Natur, Struktur und Eigenschaften“, Springer-Verlag, 3. Aufl., pp. 217–222, 1988, ISBN 3-540-18977-7.
[18] W. D. Johnston, “Oxidation-reduction equilibria in iron-containing glass”, J. Am. Ceram. Soc., vol. 19, pp. 93–108, 1964, doi: https://doi.org/10.1111/j.1151-2916.1964.tb14392.x.
[19] L.C. Briese, S. Selle, C. Patzig, Y. Hu, J. Deubener, and T. Höche, “Compositional study on the size distribution of nickel nanocrystals in borosilicate glasses”, J. Non-Cryst. Solids, vol. 549, art no. 120357, 2020, doi: https://doi.org/10.1016/j.jnoncrysol.2020.120357.
[20] D. Klimm and S. Ganschow, “The control of iron oxidation state during FeO and olivine crystal growth, J. Cryst. Growth, vol. 275, pp. e849–e854, 2005, doi: https://doi.org/10.1016/j.jcrysgro.2004.11.080.
[21] D. Channei, S. Phanichphant, A. Nakaruk, S. M. Sajjad, P. Koshy and C. C. Sorrell, “Aqueous and surface chemistries of photocatalytic Fe-doped CeO2 nanoparticles”, Catal., vol. 7 , art. no. 45, 2017, doi: https://doi.org/10.3390/catal7020045.
[22] F. Gonella and P. Mazzoldi, “Chapter 2 – Metal nanocluster composite glasses”, in: Handbook of nanostructured materials and nanotechnology (ed. H.S. Nalwa), vol. 4, pp. 81–158, 2000, doi: https://doi.org/10.1016/B978-012513760-7/50044-7.
[23] M. Ono, S. Miyasaka. Y. Takato, S. Urata, H. Yoshino, R. Ando, and Y. Hayashi, “Higher toughness of metalnanoparticle-implanted sodalime silicate glass with increased ductility”, Sci. Rep., vol. 9, art.-no. 15387, 2019, doi: https://doi.org/10.1038/s41598-019-51733-5.
[24] L. Liu and K. Shinozaki, “Brittle–ductile transition and toughening of silica glass via Ni nanoparticle incorporation at a small volume fraction”, J. All. Comp., vol. 940, art. no. 168874, 2023, doi: https://doi.org/10.1016/j.jallcom.2023.168874.
[25] Y. Abe, T. Arahori, and A. Naruse, “Crystallization of Ca(PO3)2 glass below the glass transition temperature”, J. Am. Ceram. Soc., vol. 59, pp. 487–490, 1976, doi: https://doi.org/10.1111/j.1151-2916.1976.tb09414.x.
[26] V. Guencheva, E. Stoyanov, I. Gutzow, C. Günter, and C. Rüssel, “Induced crystallization of glass-forming melts: Part 1. Heterogeneous nucleation. Effect of noble metal microcrystals on the crystallization of calcium metaphosphate glasses”, Glass Sci. Technol., vol. 77, pp. 217–228, 2004, doi: https://doi.org/10.34657/12949.
[27] Y. Miyabayashi, M. Nakamoto, T. Tanaka and T. Yamamoto, “Model for estimating the viscosity of molten aluminosilicate containing calcium fluoride”, ISIJ Int., vol. 49, pp. 343–348, 2009, doi: https://doi.org/10.2355/isijinternational.49.343.
[28] W. Vogel, ”Phase separation in glass”, J. Non.-Cryst. Solids, vol. 25, pp. 170–214, 1977, doi: https://doi.org/10.1016/0022-3093(77)90093-X.
[29] I. V. Veksler, A. M. Dorfman, P. Dulski, V. S. Kamenetsky, L. V. Danyushevsky, T. Jeffries and D. B. Dingwell, “Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite”, Geochim. Cosmochim. Acta, vol. 79, pp. 20–40, 2012, doi: https://doi.org/10.1016/j.gca.2011.11.035.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Susanne Selle, Hansjörg Bornhöft, Jörg Christoph Wendel, Joachim Deubener
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-09-02
Published 2024-09-16
Funding data
-
Deutsche Forschungsgemeinschaft
Grant numbers DE 598/30-1;SE 2796/2-1