Phosphate/Silicate Ratio Allows for Fine-Tuning of Bioactive Glass Crystallisation and Glass-Ceramic Microstructure

Authors

DOI:

https://doi.org/10.52825/glass-europe.v2i.1187

Keywords:

Crystallisation, Bioactive Glass, Glass-Ceramic

Abstract

A combination of XRD, solid-state NMR and state-of-the-art imaging techniques were used to investigate how the calcium orthophosphate/calcium silicate ratio affects the crystallisation of bioactive glasses in the system SiO2-P2O5-CaO-CaF2. In the phosphate-free glass, xonotlite, wollastonite and cuspidine crystallised. From 2.4 mol% P2O5, fluorapatite also formed, while the amount of wollastonite decreased. Crystallisation tendency was low for low phosphate contents, while above 3 mol% P2O5 it increased. The phosphate-free glass showed a volume crystallisation mechanism with constant activation energy. By contrast, the glass with the largest phosphate to silicate ratio showed both volume and surface crystallisation, causing a pronounced decrease in activation energy with crystallisation degree. This work shows that by changing the phosphate/silicate ratio we can determine which crystal phases form, obtaining for example fluorapatite-free or wollastonite-free glass-ceramics, depending on the desired application and properties such as mechanical strength or activity in contact with physiological solutions.

Downloads

Download data is not yet available.

References

D. S. Brauer, "Bioactive glasses—structure and properties," Angew Chem Int Edit, vol. 54, no. 14, pp. 4160-4181, 2015, doi: https://doi.org/10.1002/anie.201405310.

O. Guillon, S. Y. Cao, J. Y. Chang, L. Wondraczek, and A. R. Boccaccini, "Effect of uniaxial load on the sintering behaviour of 45S5 Bioglass® powder compacts," (in English), J Eur Ceram Soc, vol. 31, no. 6, pp. 999-1007, Jun 2011, doi: https://doi.org/10.1016/J.Jeurceramsoc.2010.12.031.

C. Blaeß, R. Müller, G. Poologasundarampillai, and D. S. Brauer, "Sintering and concomitant crystallisation of bioactive glasses," Int J Appl Glass Sci, vol. 10, no. 4, pp. 449-462, 2019, doi: https://doi.org/10.1111/ijag.13477.

A. R. Boccaccini, Q. Chen, L. Lefebvre, L. Gremillard, and J. Chevalier, "Sintering, crystallisation and biodegradation behaviour of Bioglass®-derived glass-ceramics," Faraday Discuss, 10.1039/B616539G vol. 136, no. 0, pp. 27-44, 2007, doi: https://doi.org/10.1039/b616539g.

O. Peitl Filho, G. P. LaTorre, and L. L. Hench, "Effect of crystallization on apatite-layer formation of bioactive glass 45S5," (in English), J Biomed Mater Res, vol. 30, no. 4, pp. 509-514, Apr 1996. [Online]. Available: ://WOS:A1996UD18300011.

T. Duminis, S. Shahid, and R. G. Hill, "Apatite glass-ceramics: A review," (in English), Frontiers in Materials, vol. 3, Jan 9 2017, doi: https://doi.org/10.3389/fmats.2016.00059.

W. Höland et al., "Control of phase formation processes in glass-ceramics for medicine and technology," J Non-Cryst Solids, vol. 129, no. 1-3, pp. 152-162, Mar 1991, doi: https://doi.org/10.1016/0022-3093(91)90091-j.

O. Peitl Filho, E. D. Zanotto, and L. L. Hench, "Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics," J Non-Cryst Solids, vol. 292, no. 1-3, pp. 115-126, 2001 2001. [Online]. Available: ://000171993300011.

I. Kansal et al., "Diopside (CaO·MgO·2SiO2)–fluorapatite (9CaO·3P2O5·CaF2) glass-ceramics: potential materials for bone tissue engineering," J. Mater. Chem., 10.1039/C1JM11876E vol. 21, no. 40, pp. 16247-16256, 2011, doi: https://doi.org/10.1039/C1JM11876E.

A. Motealleh, S. Eqtesadi, A. Civantos, A. Pajares, and P. Miranda, "Robocast 45S5 bioglass scaffolds: in vitro behavior," J. Mater. Sci, vol. 52, no. 15, pp. 9179-9191, 2017/08/01 2017, doi: https://doi.org/10.1007/s10853-017-0775-5.

M. A. Sainz, P. Pena, S. Serena, and A. Caballero, "Influence of design on bioactivity of novel CaSiO3-CaMg(SiO3)2 bioceramics: In vitro simulated body fluid test and thermodynamic simulation," Acta Biomater., Article vol. 6, no. 7, pp. 2797-2807, 2010, doi: https://doi.org/10.1016/j.actbio.2010.01.003.

T. Kokubo, "Bioactive glass ceramics: properties and applications," Biomaterials, vol. 12, no. 2, pp. 155-163, 1991/03/01/ 1991, doi: https://doi.org/10.1016/0142-9612(91)90194-F.

H. Oonishi et al., "Quantitative comparison of bone growth behavior in granules of Bioglass®, A-W glass-ceramic, and hydroxyapatite," J Biomed Mater Res, vol. 51, no. 1, pp. 37-46, 2000, doi: https://doi.org/10.1002/(sici)1097-4636(200007)51:1<37::aid-jbm6>3.0.co;2-t.

H. R. Fernandes, A. Gaddam, A. Rebelo, D. Brazete, G. E. Stan, and J. M. F. Ferreira, "Bioactive glasses and glass-ceramics for healthcare applications in bone regeneration and tissue engineering," (in eng), Materials, vol. 11, no. 12, p. 2530, Dec 12 2018, doi: https://doi.org/10.3390/ma11122530.

J. K. M. F. Daguano, S. O. Rogero, M. C. Crovace, O. Peitl, K. Strecker, and C. Dos Santos, "Bioactivity and cytotoxicity of glass and glass-ceramics based on the 3CaO-P2O5-SiO2-MgO system," J. Mater. Sci. Mater. Med., Article vol. 24, no. 9, pp. 2171-2180, 2013, doi: https://doi.org/10.1007/s10856-013-4972-8.

C. Ritzberger, M. Schweiger, and W. Höland, "Principles of crystal phase formation in Ivoclar Vivadent glass-ceramics for dental restorations," J. Non-Cryst. Solids, vol. 432, pp. 137-142, 2016/01/15/ 2016, doi: https://doi.org/10.1016/j.jnoncrysol.2015.04.034.

X. Chen, X. Chen, D. S. Brauer, R. M. Wilson, R. G. Hill, and N. Karpukhina, "Bioactivity of sodium free fluoride containing glasses and glass-ceramics," Materials, vol. 7, no. 8, pp. 5470-5487, 2014, doi: https://doi.org/10.3390/ma7085470.

W. Höland, V. Rheinberger, and M. Frank, "Mechanisms of nucleation and controlled crystallization of needle-like apatite in glass-ceramics of the SiO2-Al2O3-K2O-CaO-P2O5 system," J. Non-Cryst. Solids, vol. 253, pp. 170-177, 1999, doi: https://doi.org/10.1016/S0022-3093(99)00351-8.

W. Höland, V. Rheinberger, S. Wegner, and M. Frank, "Needle-like apatite-leucite glass-ceramic as a base material for the veneering of metal restorations in dentistry," (in English), J. Mater. Sci. Mater. Med., vol. 11, no. 1, pp. 11-17, Jan 2000. [Online]. Available: ://WOS:000084253000002.

W. Höland et al., "Formation and crystal growth of needle-like fluoroapatite in functional glass-ceramics," J. Mater. Chem., 10.1039/B714913A vol. 18, no. 12, pp. 1318-1332, 2008, doi: https://doi.org/10.1039/B714913A.

R. Müller, L. A. Abu-Hilal, S. Reinsch, and W. Höland, "Coarsening of needle-shaped apatite crystals in SiO2 • Al2O3 • Na2O • K2O • CaO • P2O5 • F glass," J. Mater. Sci, vol. 34, no. 1, pp. 65-69, 1999/01/01 1999, doi: https://doi.org/10.1023/A:1004457305970.

D. S. Brauer, R. G. Hill, and M. D. O'Donnell, "Crystallisation of fluoride-containing bioactive glasses," Phys Chem Glasses, vol. 53, no. 2, pp. 27-30, 2012.

M. W. G. Lockyer, D. Holland, and R. Dupree, "NMR investigation of the structure of some bioactive and related glasses," J Non-Cryst Solids, vol. 188, no. 3, pp. 207-219, 1995 1995, doi: https://doi.org/10.1016/0022-3093(95)00188-3.

A. Pedone, T. Charpentier, G. Malavasi, and M. C. Menziani, "New insights into the atomic structure of 45S5 bioglass by means of solid-state NMR spectroscopy and accurate first-principles simulations," Chem Mater, vol. 22, no. 19, pp. 5644-5652, 2010 2010, doi: https://doi.org/10.1021/cm102089c.

G. Kirste et al., "Bioactive glass-ceramics containing fluorapatite, xonotlite, cuspidine and wollastonite form apatite faster than their corresponding glasses," Sci Rep, vol. 14, no. 1, p. 3997, Feb 18 2024, doi: https://doi.org/10.1038/s41598-024-54228-0.

M. D. O'Donnell, S. J. Watts, R. G. Hill, and R. V. Law, "The effect of phosphate content on the bioactivity of soda-lime-phosphosilicate glasses," J Mater Sci-Mater M, vol. 20, no. 8, pp. 1611-1618, 2009 2009, doi: https://doi.org/10.1007/s10856-009-3732-2.

R. G. Hill and D. S. Brauer, "Predicting the bioactivity of glasses using the network connectivity or split network models," J Non-Cryst Solids, vol. 357, no. 24, pp. 3884-3887, 2011 2011, doi: https://doi.org/10.1016/j.jnoncrysol.2011.07.025.

A. Calver, R. G. Hill, and A. Stamboulis, "Influence of fluorine content on the crystallization behavior of apatite-wollastonite glass-ceramics," J Mater Sci, vol. 39, no. 7, pp. 2601-2603, 2004/04/01 2004, doi: https://doi.org/10.1023/B:JMSC.0000020038.79675.0f.

J. F. Stebbins and Q. Zeng, "Cation ordering at fluoride sites in silicate glasses: a high-resolution 19F NMR study," J Non-Cryst Solids, vol. 262, no. 1-3, pp. 1-5, 2000 2000. [Online]. Available: WOS:000085311800001.

T. Höche, J. W. Gerlach, and T. Petsch, "Static-charging mitigation and contamination avoidance by selective carbon coating of TEM samples," Ultramicroscopy, vol. 106, no. 11, pp. 981-985, 2006/10/01/ 2006, doi: https://doi.org/10.1016/j.ultramic.2006.05.007.

A. A. Cabral Jr, C. Fredericci, and E. D. Zanotto, "A test of the Hruby parameter to estimate glass forming ability," J. Non-Cryst. Solids, vol. 219, pp. 182-186, 10/01 1997, doi: https://doi.org/10.1016/S0022-3093(97)00327-X.

J. Jiusti, D. R. Cassar, and E. D. Zanotto, "Which glass stability parameters can assess the glass-forming ability of oxide systems?," Int J. Appl. Glass Sci., vol. 11, no. 4, pp. 612-621, 2020, doi: https://doi.org/10.1111/ijag.15416.

A. Tilocca and A. N. Cormack, "Structural effects of phosphorus inclusion in bioactive silicate glasses," J Phys Chem B, vol. 111, no. 51, pp. 14256-14264, 2007 2007, doi: https://doi.org/10.1021/jp075677o.

A. T. Contreras Jaimes et al., "Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glasses," Sci Rep, vol. 11, no. 1, p. 19464, 2021/09/30 2021, doi: https://doi.org/10.1038/s41598-021-98863-3.

X. Chatzistavrou, T. Zorba, E. Kontonasaki, K. Chrissafis, P. Koidis, and K. M. Paraskevopoulos, "Following bioactive glass behavior beyond melting temperature by thermal and optical methods," Phys. Status Solidi A, vol. 201, no. 5, pp. 944-951, 2004, doi: https://doi.org/10.1002/pssa.200306776.

D. Groh, F. Döhler, and D. S. Brauer, "Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation," Acta Biomater, vol. 10, no. 10, pp. 4465–4473, 2014, doi: https://doi.org/10.1016/j.actbio.2014.05.019.

Ö. H. Andersson, "Glass transition temperature of glasses in the SiO2-Na2O-CaO-P2O5-Al2O3-B2O3 System," J Mater Sci-Mater M, vol. 3, no. 5, pp. 326-328, 1992 1992. [Online]. Available: WOS:A1992JP86100003.

T. Watanabe, H. Fukuyama, and K. Nagata, "Stability of cuspidine (3CaO-2SiO2-CaF2) and phase relations in the CaO-SiO2-CaF2 system," (in English), ISIJ International, vol. 42, no. 5, pp. 489-497, 2002, doi: https://doi.org/10.2355/isijinternational.42.489.

I. Kansal, D. U. Tulyaganov, A. Goel, M. J. Pascual, and J. M. F. Ferreira, "Structural analysis and thermal behavior of diopside–fluorapatite–wollastonite-based glasses and glass–ceramics," Acta Biomater., vol. 6, no. 11, pp. 4380-4388, 2010/11/01/ 2010, doi: https://doi.org/10.1016/j.actbio.2010.05.019.

X. J. Chen, N. Karpukhina, D. S. Brauer, and R. G. Hill, "High chloride content calcium silicate glasses," (in English), Phys Chem Chem Phys, vol. 19, no. 10, pp. 7078-7085, Mar 14 2017, doi: https://doi.org/10.1039/c6cp07905a.

L. R. Pinckney, G. H. Beall, and R. L. Andrus, "Strong sintered miserite glass-ceramics," J. Am. Ceram. Soc., vol. 82, no. 9, pp. 2523-2528, 1999, doi: https://doi.org/10.1111/j.1151-2916.1999.tb02114.x.

N. Kanchanarat, C. A. Miller, P. V. Hatton, P. F. James, and I. M. Reaney, "Early stages of crystallization in canasite-based glass ceramics," J. Am. Ceram. Soc., vol. 88, no. 11, pp. 3198-3204, 2005, doi: https://doi.org/10.1111/j.1551-2916.2005.00589.x.

N. Y. Mostafa, A. A. Shaltout, H. Omar, and S. A. Abo El-Enein, "Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1nm tobermorites," J. Alloys Compd., vol. 467, no. 1, pp. 332-337, 2009/01/07/ 2009, doi: https://doi.org/10.1016/j.jallcom.2007.11.130.

E. John, C. Lehmann, and D. Stephan, "Xonotlite and hillebrandite as model compounds for calcium silicate hydrate seeding in cementitious materials," Transportation Research Record, vol. 2675, no. 9, pp. 65-72, 2021, doi: https://doi.org/10.1177/0361198120943205.

L. Grund Bäck, S. Ali, S. Karlsson, D. Moncke, E. I. Kamitsos, and B. Jonson, "Mixed alkali/alkaline earth-silicate glasses: Physical properties and structure by vibrational spectroscopy," (in English), Int J Appl Glass Sci, vol. 10, no. 3, pp. 349-362, Jul 2019, doi: https://doi.org/10.1111/ijag.13101.

A. de Pablos-Martín, A. T. Contreras Jaimes, S. Wahl, S. Meyer, and D. S. Brauer, "Fluorine loss determination in bioactive glasses by laser‐induced breakdown spectroscopy (LIBS)," Int J Appl Glass Sci, vol. 12, no. 2, pp. 213-221, 2021, doi: https://doi.org/10.1111/ijag.15867.

M. T. Hamedani, V. K. Marghussian, and H. Sarpoolaky, "Effect of composition and heat treatment on the phase evolution and mechanical properties of tough miserite-based glass ceramics," J. Non-Cryst. Solids, vol. 382, pp. 112-120, 2013/12/15/ 2013, doi: https://doi.org/10.1016/j.jnoncrysol.2013.10.015.

R. Levinskas et al., "Modified xonotlite–type calcium silicate hydrate slabs for fire doors," J. Fire Sci., vol. 36, no. 2, pp. 83-96, 2018, doi: https://doi.org/10.1177/0734904118754381.

N. Karpukhina, R. G. Hill, and R. V. Law, "Crystallisation in oxide glasses - a tutorial review," Chemical Society Reviews, 10.1039/C3CS60305A vol. 43, no. 7, pp. 2174-2186, 2014, doi: https://doi.org/10.1039/c3cs60305a.

M. Jarlbring, D. E. Sandström, O. N. Antzutkin, and W. Forsling, "Characterization of active phosphorus surface sites at synthetic carbonate-free fluorapatite using single-pulse H-1, P-31, and T-31 CP MAS NMR," (in English), Langmuir, vol. 22, no. 10, pp. 4787-4792, May 9 2006, doi: https://doi.org/10.1021/la052837j.

F. M. McCubbin et al., "Synthesis and characterization of low-OH- fluor-chlorapatite: A single-crystal XRD and NMR spectroscopic study," (in English), Am Mineral, vol. 93, no. 1, pp. 210-216, Jan 2008, doi: https://doi.org/10.2138/am.2008.2557.

X. Chen, X. Chen, D. S. Brauer, R. M. Wilson, R. G. Hill, and N. Karpukhina, "Novel alkali free bioactive fluorapatite glass ceramics," J Non-Cryst Solids, vol. 402, pp. 172-177, 2014, doi: https://doi.org/10.1016/j.jnoncrysol.2014.05.025.

I. Elgayar, A. E. Aliev, A. R. Boccaccini, and R. G. Hill, "Structural analysis of bioactive glasses," J Non-Cryst Solids, vol. 351, no. 2, pp. 173-183, 2005 2005, doi: https://doi.org/10.1016/j.jnoncrysol.2004.07.067.

C. Jäger, T. Welzel, W. Meyer-Zaika, and M. Epple, "A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite," Magn. Reson. Chem., vol. 44, no. 6, pp. 573-580, 2006, doi: https://doi.org/10.1002/mrc.1774.

Y. J. Gao, N. Karpukhina, and R. V. Law, "Phase segregation in hydroxyfluorapatite solid solution at high temperatures studied by combined XRD/solid state NMR," (in English), RSC Adv, vol. 6, no. 105, pp. 103782-103790, 2016, doi: https://doi.org/10.1039/c6ra17161c.

M. Braun, P. Hartmann, and C. Jana, "19F and 31P NMR spectroscopy of calcium apatites," J. Mater. Sci. Mater. Med., vol. 6, no. 3, pp. 150-154, 1995/03/01 1995, doi: https://doi.org/10.1007/BF00120291.

D. S. Brauer, N. Karpukhina, M. D. O'Donnell, R. V. Law, and R. G. Hill, "Fluoride-containing bioactive glasses: Effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid," Acta Biomater, vol. 6, pp. 3275-3282, 2010 2010, doi: https://doi.org/10.1016/j.actbio.2010.01.043.

A. Stamboulis, R. G. Hill, R. V. Law, and S. Matsuya, "A MAS NMR study of the crystallisation process of apatite-mullite glass-ceramics," Key Engineering Materials, vol. 254-256, pp. 99-102, 2004. [Online]. Available: https://www.scientific.net/KEM.254-256.99.

R. G. Hill, N. Da Costa, and R. V. Law, "Characterization of a mould flux glass," J Non-Cryst Solids, vol. 351, no. 1, pp. 69-74, 2005 2005. [Online]. Available: ://000226273200010.

R. G. Hill et al., "Characterisation of fluorine containing glasses and glass-ceramics by F-19 magic angle spinning nuclear magnetic resonance spectroscopy," J Eur Ceram Soc, vol. 29, no. 11, pp. 2185-2191, 2009 2009. [Online]. Available: WOS:000267394700007.

F. Munoz et al., "NMR investigation of the crystallization mechanism of LaF3 and NaLaF4 phases in aluminosilicate glasses," (in English), J. Non-Cryst. Solids, vol. 357, no. 5, pp. 1463-1468, Mar 1 2011, doi: https://doi.org/10.1016/j.jnoncrysol.2010.11.024.

O. A. Al-Harbi and E. M. A. Hamzawy, "Stable wollastonite-cuspidine glass-ceramic using inexpensive raw materials," Silicon, vol. 6, no. 4, pp. 257-264, 2014/10/01 2014, doi: https://doi.org/10.1007/s12633-014-9241-z.

T. Watanabe, H. Hashimoto, M. Hayashi, and K. Nagata, "Effect of alkali oxides on crystallization in CaO-SiO2-CaF2 glasses," ISIJ Int., vol. 48, no. 7, pp. 925-933, 2008, doi: https://doi.org/10.2355/isijinternational.48.925.

J. Yang and M. Zhu, "Evolution of compositions and properties of CaO–SiO2 based mold flux for continuous casting high Mn Steel," ISIJ Int., vol. 56, pp. 2191-2198, 12/15 2016, doi: https://doi.org/10.2355/isijinternational.ISIJINT-2016-315.

A. R. Hanifi, A. Genson, W. Redington, M. J. Pomeroy, and S. Hampshire, "Effects of nitrogen and fluorine on crystallisation of Ca–Si–Al–O–N–F glasses," J. Eur. Ceram. Soc., vol. 32, no. 4, pp. 849-857, 2012/04/01/ 2012, doi: https://doi.org/10.1016/j.jeurceramsoc.2011.10.026.

C. A. Miller, I. M. Reaney, P. V. Hatton, and P. F. James, "Crystallization of canasite/frankamenite-based glass-ceramics," (in English), Chem. Mater., vol. 16, no. 26, pp. 5736-5743, Dec 28 2004, doi: https://doi.org/10.1021/cm048946l.

C. C. Lin, K. S. Leung, P. Y. Shen, and S. F. Chen, "Elasticity and structure of the compounds in the wollastonite (CaSiO3)–Na2SiO3 system: from amorphous to crystalline state," J. Mater. Sci. Mater. Med., vol. 26, no. 1, p. 39, 2015/01/15 2015, doi: https://doi.org/10.1007/s10856-014-5361-7.

S. M. Salman, S. N. Salama, and H. A. Abo-Mosallam, "The crystallization behaviour and bioactivity of wollastonite glass-ceramic based on Na2O–K2O–CaO–SiO2–F glass system," Journal of Asian Ceramic Societies, vol. 3, no. 3, pp. 255-261, 2015, doi: https://doi.org/10.1016/j.jascer.2015.04.004.

K. T. Stanton, K. P. O'Flynn, S. Kiernan, J. Menuge, and R. Hill, "Spherulitic crystallization of apatite-mullite glass-ceramics: Mechanisms of formation and implications for fracture properties," (in English), J. Non-Cryst. Solids, vol. 356, no. 35-36, pp. 1802-1813, Aug 1 2010. [Online]. Available: ://WOS:000282395500010.

T. Kokubo et al., "Apatite and wollastonite-containing glass-ceramics for prosthetic application," Bull. Inst. Chem. Res. Kyoto Univ., vol. 60, 01/01 1982.

Q. J. Zheng et al., "Understanding glass through differential scanning calorimetry," (in English), Chem. Rev., vol. 119, no. 13, pp. 7848-7939, Jul 10 2019, doi: https://doi.org/10.1021/acs.chemrev.8b00510.

M. Todinov, "On some limitations of the Johnson-Mehl-Avrami-Kolmogorov equation," Acta Mater., vol. 48, 11/08 2000, doi: https://doi.org/10.1016/S1359-6454(00)00280-9.

H. E. Kissinger, "Reaction kinetics in differential thermal analysis," Anal Chem, 1317-43-7 (Brucite); 13397-26-7 (Calcite); 13717-00-5 (Magnesite) (thermal analysis of) vol. 29, pp. 1702-1706, 1957 1957.

A. Nommeots-Nomm et al., "Phosphate/oxyfluorophosphate glass crystallization and its impact on dissolution and cytotoxicity," Mater. Sci. Eng., C, vol. 117, p. 111269, 2020/12/01/ 2020, doi: https://doi.org/10.1016/j.msec.2020.111269.

I. Sinha and R. K. Mandal, "Avrami exponent under transient and heterogeneous nucleation transformation conditions," J. Non-Cryst. Solids, vol. 357, no. 3, pp. 919-925, 2011/02/01/ 2011, doi: https://doi.org/10.1016/j.jnoncrysol.2010.11.005.

M. J. Starink, "The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods," Thermochim. Acta, vol. 404, no. 1, pp. 163-176, 2003/09/04/ 2003, doi: https://doi.org/10.1016/S0040-6031(03)00144-8.

A. Ortega, "A simple and precise linear integral method for isoconversional data," Thermochim. Acta, vol. 474, no. 1, pp. 81-86, 2008/08/15/ 2008, doi: https://doi.org/10.1016/j.tca.2008.05.003.

M. A. Abdel-Rahim, M. M. Hafiz, and A. Z. Mahmoud, "Crystallization kinetics of overlapping phases in Se70Te15Sb15 using isoconversional methods," Pro. Nat. Sci.-Mater, vol. 25, no. 2, pp. 169-177, 2015/04/01/ 2015, doi: https://doi.org/10.1016/j.pnsc.2015.03.001.

C. Dohare and N. Mehta, "Iso-conversional kinetic study of non-isothermal crystallization in glassy Se98Ag2 alloy," J. Therm. Anal. Calorim., vol. 109, no. 1, pp. 247-253, 2012/07/01 2012, doi: https://doi.org/10.1007/s10973-011-1696-1.

S. R. Teixeira, M. Romero, and J. M. Rincón, "Crystallization of SiO2–CaO–Na2O glass using sugarcane bagasse ash as silica source," J. Am. Ceram. Soc., vol. 93, no. 2, pp. 450-455, 2010, doi: https://doi.org/10.1111/j.1551-2916.2009.03431.x.

K. K. Song, P. Gargarella, S. Pauly, G. Z. Ma, U. Kühn, and J. Eckert, "Correlation between glass-forming ability, thermal stability, and crystallization kinetics of Cu-Zr-Ag metallic glasses," J. Appl. Phys., vol. 112, no. 6, p. 063503, 2012, doi: https://doi.org/10.1063/1.4752263.

A. M. Rodrigues, L. D. Silva, R. Zhang, and V. O. Soares, "Structural effects on glass stability and crystallization," CrystEngComm, 10.1039/C7CE02135F vol. 20, no. 16, pp. 2278-2283, 2018, doi: https://doi.org/10.1039/C7CE02135F.

E. D. Zanotto, "Effect of liquid phase separation on crystal nucleation in glass-formers. Case closed," (in English), Ceram. Int., vol. 46, no. 16, pp. 24779-24791, Nov 2020, doi: https://doi.org/10.1016/j.ceramint.2020.06.305.

A. Karamanov, I. Avramov, L. Arrizza, R. Pascova, and I. Gutzow, "Variation of Avrami parameter during non-isothermal surface crystallization of glass powders with different sizes," J. Non-Cryst. Solids, vol. 358, pp. 1486–1490, 07/01 2012, doi: https://doi.org/10.1016/j.jnoncrysol.2012.04.003.

R. Wurth et al., "Crystallisation mechanism of a multicomponent lithium alumino-silicate glass," Mater. Chem. Phys., Article vol. 134, no. 2-3, pp. 1001-1006, 2012, doi: https://doi.org/10.1016/j.matchemphys.2012.03.103.

I. Donald, "Crystallisation kinetics of a lithium zinc silicate glass studied by DTA and DSC," J. Non-Cryst. Solids, vol. 345, pp. 120-126, 10/01 2004, doi: https://doi.org/10.1016/j.jnoncrysol.2004.08.007.

J. A. Augis and J. E. Bennett, "Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method," J. Therm. Anal., vol. 13, no. 2, pp. 283-292, 1978/04/01 1978, doi: https://doi.org/10.1007/BF01912301.

K. Matusita, T. Komatsu, and R. Yokota, "Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials," J. Mater. Sci, vol. 19, no. 1, pp. 291-296, 1984/01/01 1984, doi: https://doi.org/10.1007/BF02403137.

W. Lu, B. Yan, and W.-H. Huang, "Complex primary crystallization kinetics of amorphous Finemet alloy," J. Non-Cryst. Solids, vol. 351, no. 40, pp. 3320-3324, 2005/10/15/ 2005, doi: https://doi.org/10.1016/j.jnoncrysol.2005.08.018.

Downloads

Published

2024-06-03

How to Cite

Contreras Jaimes, A. T., Kirste, G., Patzig, C., Martins de Souza e Silva, J., Massera, J., Karpukhina, N., … Brauer, D. S. (2024). Phosphate/Silicate Ratio Allows for Fine-Tuning of Bioactive Glass Crystallisation and Glass-Ceramic Microstructure. Glass Europe, 2, 1–26. https://doi.org/10.52825/glass-europe.v2i.1187
Received 2024-03-04
Accepted 2024-05-08
Published 2024-06-03

Funding data