German Renewable Energy Policies and Their Implications for Local Land Use – Maize for Biogas From 2008 - 2018 in Brandenburg
DOI:
https://doi.org/10.52825/gjae.v74i.2562Keywords:
Maizification, Biogas, Maize, Multicriteria Analysis, AHP, Land-UseAbstract
This study investigates the spatiotemporal dynamics of maize cultivation for biogas production in Brandenburg, Germany, from 2008 to 2018, employing a spatially explicit multicriteria analysis. By combining plot-level land-use data from the Integrated Administration and Control System (IACS) with biogas pnt information, we analyze the likelihood of maize cultivation for biogas at the plot level and find that maize for biogas accounts for over 5% of the total arable land in Brandenburg. We identify patterns of high concentration, particularly in the northwest of the region. The analysis also reveals a steady increase in maize cultivation, aligning with regulatory changes in the Renewable Energy Sources Act (EEG). These findings offer valuable insights into the spatial patterns and drivers of biogas maize production, providing a basis for future environmental and economic research. The study highlights the need for plot-level information to evaluate the effects of renewable energy policies on local land use.
Downloads
References
Adanma, U.M., Ogunbiyi, E.O. (2024): Assessing the economic and environmental im-pacts of renewable energy adoption across different global regions. Engineering Science & Technology Journal 5 (5). https://doi.org/10.51594/estj.v5i5.1154.
AEE (Agentur für Erneuerbare Energien) (2013): Potenzialatlas. Bioenergie in den Bundes-ländern: Brandenburg. https://www.unendlich-viel-energie.de/media/file/237.AEE_Potenzialatlas_Bioenergie_Brandenburg_jan13.pdf, ac-cessed: September 2024.
AEE (2018): Stromerzeugung aus Biomasse - Bioenergie - BB - Daten und Fakten zur Ent-wicklung Erneuerbarer Energien in einzelnen Bundesländern - Föderal Erneuerbar. Agen-tur für Erneuerbare Energien. https://www.foederal-erneuerbar.de/landesinfo/bundesland/BB/kategorie/bioenergie/auswahl/179-stromerzeugung_aus_b/sicht/diagramm/ordnung/2007/#goto_179, accessed: September 2024.
AfSBB (Amt für Statistik Berlin-Brandenburg) (2019): Statistischer Bericht 2008-2019 Boden-nutzung der landwirtschaftlichen Betriebe im Land Brandenburg. Potsdam. https://www.statistischebibliothek.de/mir/receive/BBSerie_mods_00000173, accessed: September 2024).
Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., Gruber, L. (2007): Biogas production from maize and dairy cattle manure - Influence of biomass composition on the methane yield. Agriculture, Ecosystems & Environment 118 (1-4): 173-182. https://doi.org/10.1016/j.agee.2006.05.007.
Anselin, L. (1995): Local Indicators of Spatial Association-LISA. Geographical Analysis 27 (2): 93-115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x.
Appel, F., Ostermeyer-Wiethaup, A., Balmann, A. (2016): Effects of the German Renewable Energy Act on structural change in agriculture – The case of biogas. Utilities Policy 4: 172-182. https://doi.org/10.1016/j.jup.2016.02.013.
Appunn, K. (2016): Bioenergy - the troubled pillar of the Energiewende: Biogas in Germany's energy transition. Clean Energy Wire. Journalism for the energy transition. https://www.cleanenergywire.org/dossiers/bioenergy-germany, accessed: September 2024).
Balmann, A., Graubner, M., …, Ritter, M. (2021): Market Power in Agricultural Land Markets: Concepts and Empirical Challenges. German Journal of Agricultural Economics 70 (4). https://doi.org/10.30430/gjae.2021.0117.
Balussou, D. (2018): An analysis of current and future electricity production from biogas in Germany. PhD zur Erlangung des akademischen Grades eines Doktors der Ingenieurwis-senschaften (Dr.-Ing.), Karlsruhe.
Bartoli, A., Cavicchioli, D., Kremmydas, D., Rozakis, S., Olper, A. (2016): The impact of dif-ferent energy policy options on feedstock price and land demand for maize silage: The case of biogas in Lombardy. Energy Policy 96: 351-363. https://doi.org/10.1016/j.enpol.2016.06.018.
Bidart, C., Fröhling, M., Schultmann, F. (2014): Livestock manure and crop residue for ener-gy generation: Macro-assessment at a national scale. Renewable and Sustainable Energy Reviews 38: 537-550. https://doi.org/10.1016/j.rser.2014.06.005.
Biogas_silage_maize (2020): https://github.com/vergoraf/Biogas_silage_maize.git, accessed: September 2024).
BMEL (Bundesamt für Ernährung und Landwirtschaft) (2015): Das Erneuerbare-Energien-Gesetz: Daten und Fakten zur Biomasse - Die Novelle 2014. Berlin.
BMEL (2022): Daten und Fakten: Land-, Forst- und Ernährungswirtschaft mit Fischerei und Wein- und Gartenbau 2020. https://www.bmel.de/SharedDocs/Downloads/DE/Broschueren/daten-fakten-2022.pdf?__blob=publicationFile&v=8, accessed: September 2024.
BMJ (Bundesministerium der Justiz) (2014): Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz). Berlin. https://www.gesetze-im-internet.de/eeg_2014/BJNR106610014.html, accessed: September 2024.
BMJV (Bundesministerium für Justiz und Verbraucherschutz) (2019): Verordnung über die Durchführung von Stützungsregelungen und des Integrierten Verwaltungs- und Kontroll-systems (InVeKoS-Verordnung - InVeKoSV). Berlin. https://www.gesetze-im-internet.de/invekosv_2015/BJNR016610015.html, accessed: September 2024.
BMU (Bundesumweltministerium) (2012): Gesetz für den Vorrang Erneuerbarer Energien (Erneuerbare-Energien-Gesetz – EEG). Berlin.
BMWi (Bundesministerium für Wirtschaft und Energie) (2016): Die nächste Phase der Ener-giewende kann beginnen. Berlin. https://www.bmwk.de/Redaktion/DE/Downloads/I/informationen-zu-wichtigen-energiegesetzesvorhaben.html, accessed:September 2024.
BMWi (2017): Renewable Energy Sources Act (EEG 2017). Berlin.
BNetzA (Bundesnetzagentur) (2019): Marktstammdatenregister. Bonn. https://www.marktstammdatenregister.de/MaStR, accessed: August 2019.
Bock und Polach, C. von, Kunze, C., Maaß, O., Grundmann, P. (2015): Bioenergy as a so-cio-technical system: The nexus of rules, social capital and cooperation in the develop-ment of bioenergy villages in Germany. Energy Research & Social Science 6: 128-135. https://doi.org/10.1016/j.erss.2015.02.003.
Brendel, F. (2011): Energie im großen Sti l: Auswirkungen des Biogas-Booms auf Umwelt, Artenvielfalt und Landwirtschaft. Nachhaltigkeit. WWF, Berlin.
Britz, W., Delzeit, R. (2013): The impact of German biogas production on European and glob-al agricultural markets, land use and the environment. Energy Policy 62: 1268-1275. https://doi.org/10.1016/j.enpol.2013.06.123.
Bunzel, K., Kattwinkel, M., Schauf, M., Thrän, D. (2014): Energy crops and pesticide contam-ination: Lessons learnt from the development of energy crop cultivation in Germany. Bio-mass and Bioenergy 70: 416-428. https://doi.org/10.1016/j.biombioe.2014.08.016.
Burchfield, E., Ferro, M., Hüttel, S., Lakes, T., Leonhardt, H., Niedermayr, A., Rissing, A., Seifert, S., Wesemeyer, M. (2024): Towards a comprehensive analysis of agricultural land systems in the EU and US: A critical view on publicly available datasets. Land Use Policy 147. https://doi.org/10.1016/j.landusepol.2024.107371.
Castro, C.P., Sarmiento, J.P., Garuti, C. (2016): Disaster Risk Assessment Developing a Perceived Comprehensive Disaster Risk Index: The Cases of Three Chilean Cities. In: Felice, F. de, Saaty, T.L., Petrillo, A. (Eds.): Applications and Theory of Analytic Hierarchy Process - Decision Making for Strategic Decisions. IntechOpen. https://doi.org/10.5772/62994.
climate-data (2019): Climate Brandenburg: Temperature, climate graph, Climate table for Brandenburg - Climate-Data.org. https://en.climate-data.org/europe/germany/brandenburg-424/, accessed: September 2024.
Couture, T., Gagnon, Y. (2010): An analysis of feed-in tariff remuneration models: Implica-tions for renewable energy investment. Energy Policy 38 (2): 955-965. https://doi.org/10.1016/j.enpol.2009.10.047.
DBFZ (Deutsches Biomasseforschungszentrum) 2012. Monitoring zur Wirkung des Erneuer-bare-Energien-Gesetzes (EEG) auf die Entwicklung der Stromerzeugung aus Biomasse: Kurztitel: Stromerzeugung aus Biomasse. Endbericht zur EEG-Periode 2009 bis 2011. Leipzig. https://www.dbfz.de/fileadmin/user_upload/Referenzen/DBFZ_Reports/DBFZ_Report_12.pdf, accessed: September 2024.
DBFZ (2015): Stromerzeugung aus Biomasse (Vorhaben Ila Biomasse). Leipzig. https://www.dbfz.de/fileadmin/user_upload/Referenzen/Berichte/Monitoring_ZB_Mai_2014.pdf, accessed: September 2024.
DBFZ (2016): Biomasse im EEG 2016: Hintergrundpapier zur Situation der Bestandsanlagen in den verschiedenen Bundesländern. Leipzig. https://www.dbfz.de/fileadmin/user_upload/Referenzen/Statements/Hintergundpapier_Biomasse_EEG2016.pdf, accessed: September 2024.
DBFZ (2017): DBFZ-Report 30. Anlagenbestand Biogas und Biomethan – Biogaserzeugung und -nutzung in Deutschland. Leipzig. https://www.dbfz.de/fileadmin/user_upload/Referenzen/DBFZ_Reports/DBFZ_Report_30.pdf, accessed: September 2024.
Delzeit, R., Kellner, U. (2013): The impact of plant size and location on profitability of biogas plants in Germany under consideration of processing digestates. Biomass and Bioenergy 52: 43-53. https://doi.org/10.1016/j.biombioe.2013.02.029.
Delzeit, R., Britz, W., Holm-Müller, K. (2012): Modelling regional input markets with numerous processing plants: The case of green maize for biogas production in Germany. Environ-mental Modelling and Software 32: 74-84. https://doi.org/10.1016/j.envsoft.2011.08.014.
Demirbas, A.H., Demirbas, I. (2007): Importance of rural bioenergy for developing countries. Energy Conversion and Management 48 (8): 2386-2398. https://doi.org/10.1016/j.enconman.2007.03.005.
EEA (European Environment Agency) (2007): Estimating the environmentally compatible bio-energy potential from agriculture. Copenhagen. https://www.eea.europa.eu/en/analysis/publications/technical_report_2007_12, accessed: September 2024.
EKS (2016): Bioenergie im Land Brandenburg (WMS-MWE-Bioenergie). Energie-und Klima-schutzatlas Brandenburg. https://geoportal.brandenburg.de/detailansichtdienst/render?view=gdibb&url=https%3A%2F%2Fgeoportal.lgb.local%2Fgs-json%2Fxml%3Ffileid%3Dd06a4fd2-a007-45a8-bbc5-6ee095f4da86 (accessed August 2019). [dataset under dl-de/by-2-0, under request to owner] Now: https://energieportal-brandenburg.de, accessed: September 2024.
Epp, C., Rutz, D., Köttner, M., Finsterwalder, T. (2008): Guidelines for Selecting Suitable Sites for Biogas Plants. Big>East, Munich. https://www.big-east.eu/bigeast_reports/WP6_Site_Selection_Strategy_final_20080404.pdf, ac-cessed:September 2024.
Europäischer Rat (2009): Verordnung (EG) Nr. 73/2009 des Rates vom 19. Januar 2009 mit gemeinsamen Regeln für Direktzahlungen im Rahmen der gemeinsamen Agrarpolitik und mit bestimmten Stützungsregelungen für Inhaber landwirtschaftlicher Betriebe und zur Änderung der Verordnungen (EG) Nr. 1290/2005, (EG) Nr. 247/2006, (EG) Nr. 378/2007 sowie zur Aufhebung der Verordnung (EG) Nr. 1782/2003. Brüssel. https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32009R0073, accessed: Septem-ber 2024.
Fell, H.-J. (2009): Feed-in tariff for renewable energies: an effective stimulus package without new public borrowing. https://www.researchgate.net/publication/265348378_Feed-in_Tariff_for_Renewable_Energies_An_Effective_Stimulus_Package_without_New_Public_Borrowing, accessed: September 2024.
FNR (2019): Basisdaten Bioenergie Deutschland. https://www.fnr.de/fileadmin/allgemein/pdf/broschueren/basisdaten_bioenergie_2019_web.pdf, accessed September 2024.
Gawel, E., Ludwig, G. (2011): The iLUC dilemma: How to deal with indirect land use changes when governing energy crops? Land Use Policy 28 (4): 846-856. https://doi.org/10.1016/j.landusepol.2011.03.003.
Grundmann, P., Klauss, H. (2014): The impact of global trends on bioenergy production, food supply and global warming potential – an impact assessment of land-use changes in four regions in Germany using linear programming. Journal of Land Use Science 9 (1): 34-58. https://doi.org/10.1080/1747423X.2012.719935.
Gutzler, C., Helming, K., …, Zander, P. (2015): Agricultural land use changes – a scenario-based sustainability impact assessment for Brandenburg, Germany. Ecological Indicators 48: 505-517. https://doi.org/10.1016/j.ecolind.2014.09.004.
Häußermann, U., Klement, L., Breuer, L., Ullrich, A., Wechsung, G., Bach, M. (2020): Nitro-gen soil surface budgets for districts in Germany 1995 to 2017. Environmental Sciences Europe 32 (1). https://doi.org/10.1186/s12302-020-00382-x.
Herrmann, A. (2013): Biogas Production from Maize: Current State, Challenges and Pro-spects. 2. Agronomic and Environmental Aspects. BioEnergy Research 6 (1): 372-387. https://doi.org/10.1007/s12155-012-9227-x.
Huth, E., Paltrinieri, S., Thiele, J. (2019): Bioenergy and its effects on landscape aesthetics – A survey contrasting conventional and wild crop biomass production. Biomass and Bioen-ergy 122: 313-321. https://doi.org/10.1016/j.biombioe.2019.01.043.
Klein, A., Held, A., Ragwitz, M., Resch, G., Faber, T. (2008): Evaluation of Different Feed-in Tariff Design Options: Best Practice Paper for the International Feed-in Cooperation, Germany. www.feed-in-cooperation.org/wDefault_7/wDefault_7/download-files/research/best_practice_paper_2nd_edition_final.pdf, accessed: September 2024.
Kumar, A., Sah, B., Singh, A.R., Deng, Y., He, X., Kumar, P., Bansal, R.C. (2017): A review of multi criteria decision making (MCDM) towards sustainable renewable energy devel-opment. Renewable and Sustainable Energy Reviews 69: 596-609. https://doi.org/10.1016/j.rser.2016.11.191.
Lakes, T., Garcia-Marquez, J., Müller, D., Lakner, S., Pe’er, G. (2020): How green is green-ing? A fine-scale analysis of spatio-temporal dynamics in Germany. FORLand Working Papers No 17. http://dx.doi.org/10.18452/21031.
LELF (Landesamt für Ländliche Entwicklung, Landwirtschaft und Flurneuordnung Branden-burg) (2016): Datensammlung für die betriebswirtschaftliche Bewertung landwirtschaftli-cher Produktionsverfahren im Land Brandenburg. Ackerbau/Grünland/Tierproduktion. Frankfurt (Oder). https://lelf.brandenburg.de/media_fast/4055/Datensammlung%202016_web.pdf, acces-sed: August 2019.
LELF (2019): Sortenratgeber: Silomais-Körnermais-Sorghum. Frankfurt (Oder). https://www.isip.de/isip/servlet/resource/blob/265946/056256cc25e6c0981d68e8d8ccd05a15/sr-silomais-koernermais-sorghum-data.pdf, accessed: August 2019.
Leonhardt, H., Hüttel, S., Lakes, T., Wesemeyer, M., Wolff, S. (2022): Applications of Land-use Data from the Integrated Administration and Control System (IACS) in Scientific Re-search: A scoping Review Pilot Analysis. 62nd Annual Conference, German Association of Agricultural Economists (GEWISOLA), Stuttgart, Germany, September 7-9, 2022. https://doi.org/10.22004/ag.econ.329611.
LfU (Landesamt für Umwelt) (2019): Kataster Biogas des Landes Brandenburg: Standortda-ten von Biogasanlagen mit Straße und Hausnummer, Ort und Ortsteil sowie Koordinaten, technische Daten wie elektrische und thermische Leistung. https://www.metaver.de/trefferanzeige?docuuid=65A6F973-BC30-418A-9A9F-F7FC5686E3DE [dataset under dl-de/by-2-0], accessed: April 2019.
Lüker-Jans, N., Simmering, D., Otte, A. (2017): The impact of biogas plants on regional dy-namics of permanent grassland and maize area - The example of Hesse, Germany (2005-2010). Agriculture, Ecosystems & Environment 241: 24-38. https://doi.org/10.1016/j.agee.2017.02.023.
Lupp, G., Steinhäußer, R., Starick, A., Moritz, G., Bastian, O., Albrecht, J. (2014): Forcing Germany's renewable energy targets by increased energy crop production: A challenge for regulation to secure sustainable land use practices. Land Use Policy 36: 296-306. https://doi.org/10.1016/j.landusepol.2013.08.012.
Malczewski, J. (2006): GIS‐based multicriteria decision analysis: a survey of the literature. International Journal of Geographical Information Science 20 (7): 703-726. https://doi.org/10.1080/13658810600661508.
Malczewski, J., Rinner, C. (2015): Multicriteria decision analysis in geographic information science. Vol. 1. Springer, New York.
MIL (Ministerium für Infrastruktur und Landwirtschaft des Landes Brandenburg) (2012): Agr-arbericht 2011/2012. Potsdam. https://mil.brandenburg.de/sixcms/media.php/9/Agrarbericht_2011-2012.pdf (accessed September 2024).
Mitiku Teferra, D., Wubu, W. (2018): Biogas for Clean Energy. IntechOpen. https://doi.org/10.5772/intechopen.79534.
MLUK (Ministerium für Landwirtschaft, Umwelt und Klimaschutz des Landes Brandenburg) (2020): INVEKOS Daten. https://geobroker.geobasis-bb.de.
MLUK (2016): Optimierung von Biogasanlagen: Leitfaden zum Betrieb von Biogasanlagen im Land Brandenburg. https://mluk.brandenburg.de/sixcms/media.php/9/Leitfaden-Optimierung-Biogasanlagen.pdf.
Mueller, L., Schindler, U., Behrendt, A., Eulenstein, F., Dannowski, R. (2007): The Muenche-berg Soil Quality Rating (SQR). Leibniz-Centre for Agricultural Landscape Research (ZALF) e. V., Muencheberg.
MUGV (Ministerium für Umwelt, Gesundheit und Verbraucherschutz des Landes Branden-burg) (2010): Biomass Strategy of the Land Brandenburg. Potsdam. http://www.mugv.brandenburg.de/cms/media.php/lbm1.a.2328.de/bmstrategie.pdf, ac-cessed: August 2019.
MWEn (Ministerium für Wirtschaft und Europaangelegenheiten des Landes Brandenburg) (2012): Energiestrategie 2030 des Landes Brandenburg. Potsdam. https://mwaek.brandenburg.de/de/energiestrategie-2030/bb1.c.491859.de, accessed: Sep-tember 2024.
MWEn (2018): Energiestrategie 2030. Katalog der strategischen Maßnahmen. Potsdam. https://mwae.brandenburg.de/media/bb1.a.3814.de/ES2030_Massnahmenkatlog_final.pdf, accessed: September 2024.
Myrna, O., Odening, M., Ritter, M. (2019): The Influence of Wind Energy and Biogas on Farmland Prices. Land 8 (1): 19. https://doi.org/10.3390/land8010019.
Overend, R. (1982): The Average Haul Distance and Transportation Work Factors for Bio-mass Delivered to a Central Plant. Biomass 2 (1): 75-79. https://doi.org/10.1016/0144-4565(82)90008-7.
Pedroli, B., Elbersen, B., Frederiksen, P., Grandin, U., Heikkilä, R., Krogh, P.H., Izakovičová, Z., Johansen, A., Meiresonne, L., Spijker, J. (2013): Is energy cropping in Europe compat-ible with biodiversity? – Opportunities and threats to biodiversity from land-based produc-tion of biomass for bioenergy purposes. Biomass and Bioenergy 55: 73-86. https://doi.org/10.1016/j.biombioe.2012.09.054.
Peichl, M., Thober, S., Samaniego, L., Hansjürgens, B., Marx, A. (2019): Climate impacts on long-term silage maize yield in Germany. Scientific Reports 9 (1): 7674. https://doi.org/10.1038/s41598-019-44126-1.
Quitzow, L., Canzler, W., Grundmann, P., Leibenath, M., Moss, T., Rave, T. (2016): The German Energiewende – What's happening? Introducing the special issue. Utilities Policy 41: 163-171. https://doi.org/10.1016/j.jup.2016.03.002.
Reise, C., Musshoff, O., Granoszewski, K., Spiller, A. (2011): Which factors influence the expansion of bioenergy? An empirical study of the investment behaviours of German farmers. Ecological Economics 73: https://doi.org/10.1016/j.ecolecon.2011.10.008.
Saaty, T. (1980): The Analythic Hierarchy Process. McGraw-Hill, New York.
Sauerbrei, R., Ekschmitt, K., Wolters, V., Gottschalk, T.K. (2014): Increased energy maize production reduces farmland bird diversity. GCB Bioenergy 6 (3): 265-274. https://doi.org/10.1111/gcbb.12146.
Schmid, E., Pechan, A., Mehnert, M., Eisenack, K. (2017): Imagine all these futures: On het-erogeneous preferences and mental models in the German energy transition. Energy Re-search & Social Science 27: 45-56. https://doi.org/10.1016/j.erss.2017.02.012.
Schulze Steinmann, M., Holm-Müller, K. (2010): Thünensche Ringe der Biogaserzeugung-der Einfluss der Transportwürdigkeit nachwachsender Rohstoffe auf die Rohstoffwahl von Bi-ogasanlagen. GJAE 59 (1): 1-12. https://doi.org/10.52825/gjae.v59i1.1767.
Scott, M.P., Emery, M. (2016): Maize: Overview. In: Smithers, G.W. (Ed.): Reference mod-ule in food science. Elsevier, Amsterdam.
Sultana, A., Kumar, A. (2014): Development of tortuosity factor for assessment of lignocellu-losic biomass delivery cost to a biorefinery. Applied Energy 119: 288-295. https://doi.org/10.1016/j.apenergy.2013.12.036.
Statistik Berlin Brandenburg (2021): Größenstruktur, sozialökonomische Betriebstypen sowie Rechtsformen der landwirtschaftlichen Betriebe im Land Brandenburg 2020. https://www.statistik-berlin-brandenburg.de/c-iv-7-3j.
Statistisches Jahrbuch Brandenburg (2009-2019): Potsdam https://www.statistischebibliothek.de/mir/receive/BBSerie_mods_00000003, accessed: September 2024.
Tavakoli-Hashjini, E., Piorr, A., Müller, K., Vicente-Vicente, J.L. (2020): Potential Bioenergy Production from Miscanthus × giganteus in Brandenburg: Producing Bioenergy and Fos-tering Other Ecosystem Services while Ensuring Food Self-Sufficiency in the Berlin-Brandenburg Region. Sustainability 12 (18): 7731. https://doi.org/10.3390/su12187731.
Tenerelli, P., Pantaleo, A., Carone, M.T., Pellerano, A., Recchia, L. (2007): Spatial, environ-mental and economic modelling of energy crop routes: Liquid vs solid biomass to electrici-ty chains in Puglia Region: Conference: 15th European Biomass Conference & Exhibition, Berlin. https://www.researchgate.net/publication/255484615_Spatial_environmental_and_economic_modeling_of_energy_crop_routes_liquid_vs_solid_biomass_to_electricity_chains_in_Puglia_region, accessed: September 2024.
Thünen, J.H. von (1966): Von Thünen's Isolated State, 1st ed. Pergamon Press, Oxford.
Thüringen Landesanstalt für Landwirtschaft (2009): Leitlinie zur effizienten und umweltver-träglichen Jungrinderaufzucht (Tabelle 9). https://www.tll.de/www/daten/publikationen/leitlinien/ll_juri.pdf, accessed: September 2024.
Thüringen Landesanstalt für Landwirtschaft (2011): Betriebswirtschaftliche Richtwerte Bul-lenmast (Tabelle 3.3.1). https://www.tll.de/www/daten/publikationen/richtwerte/buma0911.pdf, accessed: Septem-ber 2024.
Torrijos, M. (2016): State of Development of Biogas Production in Europe. Procedia Envi-ronmental Sciences 35: 881-889. https://doi.org/10.1016/j.proenv.2016.07.043.
Tóth, K., Kučas, A. (2016): Spatial information in European agricultural data management. Requirements and interoperability supported by a domain model. Land Use Policy 57: 64-79. https://doi.org/10.1016/j.landusepol.2016.05.023.
Treves, A., Bottero, M., Caprioli, C., Comino, E. (2020): The reintroduction of Castor fiber in Piedmont (Italy): An integrated SWOT-spatial multicriteria based approach for the analysis of suitability scenarios. Ecological Indicators 110: 106748. https://doi.org/10.1016/j.ecolind.2020.106748.
UBA (Umweltbundesamt) (2013): Biogaserzeugung und -nutzung: Ökologische Leitplanken für die Zukunft. Dessau-Roßlau. https://www.umweltbundesamt.de/publikationen/biogaserzeugung-nutzung-oekologische-leitplanken, accessed: September 2024.
Venghaus, S., Acosta, L. (2018): To produce or not to produce: an analysis of bioenergy and crop production decisions based on farmer typologies in Brandenburg, Germany. Region-al Environmental Change 18 (2): 521-532. https://doi.org/10.1007/s10113-017-1226-1.
Walla, C., Schneeberger, W. (2008): The optimal size for biogas plants. Biomass and Bioen-ergy 32 (6): 551-557. https://doi.org/10.1016/j.biombioe.2007.11.009.
weather-and-climate (2019): Average monthly rainfall and snow in Brandenburg (Branden-burg), Germany (millimeter). https://weather-and-climate.com/average-monthly-precipitation-Rainfall,brandenburg-brandenburg-de,Germany, accessed September 2024.
Weber, A.J. (1929): Alfred Weber's theory of the location of industries. The University of Chi-cago Press, Chicago Ill.
Wolz, A. (2013): The organisation of agricultural production in East Germany since World War II: Historical roots and present situation. IAMO Discussion Papers 139. Leibniz Institute of Agricultural Development in Central and Eastern Europe (IAMO), Halle (Saale). https://hdl.handle.net/10419/83981.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tobia Lakes, Franziska Appel, Felipe Vergara

This work is licensed under a Creative Commons Attribution 4.0 International License.