Identifying Risk-Efficient Crop Portfolios for Different Cropping Systems by Analyzing the Tradeoffs Between Arable Farming Profits and Profit Stability
DOI:
https://doi.org/10.52825/gjae.v74i.2557Keywords:
Risk Analysis, Monte Carlo Simulation, Quadratic Risk Programming, Farming Without Pesticides but with Mineral FertilizerAbstract
As in agriculture uncertainties have increased due to extreme weather events and yield variations, a critical examination of crop rotation strategies is needed. This study analyses the relationship between risk and crop rotation planning, addressing the challenges posed by an increasing yield variability and related total contribution margin fluctuations. For the systems ‘conventional farming’, ‘organic farming’ and ‘farming without pesticides, but with mineral fertilizer’ time series data of crop yields, prices and variable costs are collected. The data is used for a Monte Carlo simulation that yields average contribution margins for the considered crops and their (co-)variances, which are needed to build a hypothetical model farm. Relying upon Quadratic Risk Programming, the expected total contribution margins are maximized for a set of fixed total contribution margin variances. Efficient frontiers are derived that show respective optimum combinations of the expected value of the total contribution margin and its standard deviation. Organic farming shows high average total contribution margins for optimized crop rotations, but also increased variance compared to other cropping systems. The inclusion of cereals in a crop rotation lowers the risk, whereas the inclusion of potatoes and sugar beet increases the risk within a crop portfolio across all systems. Optimizing and diversifying the crop portfolio for each cropping system is essential. An optimized farming system without pesticides, but with mineral fertilizer exhibits lower risk but also lower total contribution margin compared to other systems. This is due to a different crop portfolio but also to relatively low prices and yields.
Downloads
References
Agrarmarkt Informations-Gesellschaft (AMI) (2010a): AMI-Marktbilanz: Daten, Fakten, Ent-wicklungen; Deutschland, EU, Welt: Getreide, Ölsaaten, Futtermittel 2010. Markt Bilanz Getreide Ölsaaten Futtermittel, Bonn.
Agrarmarkt Informations-Gesellschaft (AMI) (2010b): AMI-Marktbilanz: Daten, Fakten, Ent-wicklungen; Deutschland, EU: Öko-Landbau 2010. Öko-Landbau, Bonn.
Agrarmarkt Informations-Gesellschaft (AMI) (2013): AMI-Marktbilanz: Daten, Fakten, Ent-wicklungen; Deutschland, EU: Öko-Landbau 2013. Öko-Landbau, Bonn.
Agrarmarkt Informations-Gesellschaft (AMI) (2016): AMI-Marktbilanz: Daten, Fakten, Ent-wicklungen; Deutschland, EU, Welt: Getreide, Ölsaaten, Futtermittel 2016. Markt Bilanz Getreide Ölsaaten Futtermittel, Bonn.
Agrarmarkt Informations-Gesellschaft (AMI) (2022): AMI-Marktbilanz: Daten, Fakten, Ent-wicklungen; Deutschland, EU, Welt: Getreide Ölsaaten Futtermittel 2022. Markt Bilanz Ge-treide Ölsaaten Futtermittel, Bonn.
Agrarmarkt Informations-Gesellschaft (AMI) (2023): AMI-Marktbilanz: Daten, Fakten, Ent-wicklungen; Deutschland, EU: Öko-Landbau 2023. Öko-Landbau, Bonn.
Ahrends, H.E., Siebert, S., Rezaei, E.E., Seidel, S.J., Hüging, H., Ewert, F., Döring, T., Rueda-Ayala, V., Eugster, W., Gaise, T. (2021): Nutrient supply affects the yield stability of major European crops—a 50 year study. Environmental Research Letters 16.1 (2020): 014003. https://doi.org/10.1088/1748-9326/abc849. DOI: https://doi.org/10.1088/1748-9326/abc849
Bazoche, P., Bunte, F., Combris, P., Giraud-Heraud, E., Seabra-Pinto, A., Tsakiridou, E. (2012): Willingness to pay for pesticides' reduction in European union: nothing but organic? https://hal.inrae.fr/hal-02807216. Accessed 6 January 2024.
Bohrnstedt, G.W., Goldberger, A.S. (1969): On the Exact Covariance of Products of Random Variables. Journal of the American Statistical Association 64.328 (1969): 1439-1442. DOI: https://doi.org/10.1080/01621459.1969.10501069
Böttcher, T., Zimmer, Y. (2021): Mit Sojaanbau profitabel Fruchtfolgen erweitern? Thünen Working Paper, Braunschweig.
Bowles, T.M., Mooshammer, M., … , Grandy, A.S. (2020): Long-Term Evidence Shows that Crop-Rotation Diversification Increases Agricultural Resilience to Adverse Growing Condi-tions in North America. One Earth 2.3: 284-293. https://doi.org/10.1016/j.oneear.2020.02.007. DOI: https://doi.org/10.1016/j.oneear.2020.02.007
Cellier, V., Berthier, A., Colnenne-David, C., Darras, S., Deytieux, V., Savoie, A., Aubertot, J.-N. (2018): Évaluation multicritère de systèmes de culture zéro-pesticides en grande culture et polyculture-élevage (Réseau Rés0Pest). Innovations Agronomiques 70: 273-289. https://doi.org/10.15454/y8fy5s.
Chavas, J.-P., Di Falco, S. (2012): On the Role of Risk Versus Economies of Scope in Farm Diversification With an Application to Ethiopian Farms. Journal of agricultural economics 63.1 (2012): 25-55. https://doi.org/10.1111/j.1477-9552.2011.00319.x. DOI: https://doi.org/10.1111/j.1477-9552.2011.00319.x
Dachbrodt-Saaydeh, S., Sellmann, J., Schwarz, J., Klocke, B., Krengel, S., Kehlenbeck, H. (2021): Netz Vergleichsbetriebe Pflanzenschutz: Jahresbericht 2017. Analyse der Ergeb-nisse der Jahre 2007 bis 2017. Berichte aus dem Julius Kühn-Institut, Kleinmachnow. https://doi.org/10.5073/20210309-134538.
Delbridge, T.A., King, R.P., Short, G., James, K. (2017): Risk and Red Tape: Barriers to Or-ganic Transition for U.S. Farmers. Choices 32.4: 1-10. https://www.jstor.org/stable/26487423.
FADN (EU Farm Accountancy Data Network) (FADN) database (2024): Public Database. https://agridata.ec.europa.eu/extensions/FADNPublicDatabase/FADNPublicDatabase.html, accessed 30 July 2024.
Federal Ministry of Food and Agriculture (2021): GAP-Strategieplan Bericht 2021. https://www.bmel.de/DE/themen/landwirtschaft/eu-agrarpolitik-und-foerderung/gap/gap-strategieplan.html/Agrarpolitik/GAP-Strategieplan+_Foerderperiode+2023+-+2027_. Ac-cessed 16 August 2023.
Fogelberg, F., Recknagel, J. (2017): Developing soy production in central and northern Eu-rope.In: Legumes in cropping systems. CABI, Wallingford, UK: 109-124. DOI: https://doi.org/10.1079/9781780644981.0109
Freund, R.T. (1956): The Introduction of Risk into a Programming Model. Econometrica 24 (3): 253-263. DOI: https://doi.org/10.2307/1911630
Goldman, L.I. (2002): CRYSTAL BALL PROFESSIONAL INTRODUCTORY TUTORIAL. Proceedings of the 2002 Winter Simulation Conference, Denver, USA.
Guinet, M., Adeux, G., Cordeau, S., Courson, E., Nandillon, R., Zhang, Y., Munier-Jolain, N. (2023): Fostering temporal crop diversification to reduce pesticide use. Nature Communi-cations 14.1: 7416. https://doi.org/10.1038/s41467-023-43234-x. DOI: https://doi.org/10.1038/s41467-023-43234-x
Hardaker, J.B., Lien, G., Anderson, J.R., Huirne, R.B.M. (2015): Coping with Risk in Agricul-ture: Applied Decision Analysis. 3rd ed. CABI USA. DOI: https://doi.org/10.1079/9781780645742.0000
Jacquet, F., Jeuffroy, M.-H., Jouan, J., Le Cadre, E., Litrico, I., Malausa, T., Reboud, X., Huyghe, C. (2022): Pesticide-free agriculture as a new paradigm for research. Agronomy for Sustainable Development 42.1. https://doi.org/10.1007/s13593-021-00742-8. DOI: https://doi.org/10.1007/s13593-021-00742-8
Kolbe, H. (2006): Fruchtfolgegestaltung im ökologischen und extensiven Landbau: Bewertung von Vorfruchtwirkungen. Pflanzenbauwissenschaften 10.2: 82-89.
Kolbe, H. (2008): Fruchtfolgegrundsätze im Ökologischen Landbau. https://publikationen.sachsen.de/bdb/artikel/13610, accessed 3 February 2012.
Kuminoff, N.V., Wossink, A. (2010): Why Isn’t More US Farmland Organic? Journal of Agri-cultural Economics 61.2: 240-258. https://doi.org/10.1111/j.1477-9552.2009.00235.x. DOI: https://doi.org/10.1111/j.1477-9552.2009.00235.x
Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (2023): Leistungs-Kostenrechnung Pflanzenbau. https://daten.ktbl.de/dslkrpflanze/postHv.html;jsessionid=174662B338AF2A5201CFE38065D55EE9, accessed 16 August 2023.
Liu, X., Lehtonen, H., Purola, T., Pavlova, Y., Rötter, R., Palosuo, T. (2016): Dynamic eco-nomic modelling of crop rotations with farm management practices under future pest pres-sure. Agricultural Systems 144: 65-76. https://doi.org/10.1016/j.agsy.2015.12.003. DOI: https://doi.org/10.1016/j.agsy.2015.12.003
Lorenz, M., Fürst, C., Thiel, E. (2013): A methodological approach for deriving regional crop rotations as basis for the assessment of the impact of agricultural strategies using soil ero-sion as example. Journal of environmental management 127:S37-S47. https://doi.org/10.1016/j.jenvman.2013.04.050. DOI: https://doi.org/10.1016/j.jenvman.2013.04.050
Macholdt, J., Hadasch, S., Piepho, H.-P., Reckling, M., Taghizadeh-Toosi, A., Christensen, B.T. (2021): Yield variability trends of winter wheat and spring barley grown during 1932-2019 in the Askov Long-term Experiment. Field Crops Research 264. https://doi.org/10.1016/j.fcr.2021.108083. DOI: https://doi.org/10.1016/j.fcr.2021.108083
Mack, G., Finger, R., Ammann, J., El Benni, N. (2023): Modelling policies towards pesticide-free agricultural production systems. Agricultural Systems 207. https://doi.org/10.1016/j.agsy.2023.103642. DOI: https://doi.org/10.1016/j.agsy.2023.103642
Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., Niggli, U. (2002): Soil fertility and biodiversity in organic farming. Science 296.5573: 1694-1697. https://doi.org/10.1126/science.1071148. DOI: https://doi.org/10.1126/science.1071148
Möhring, N., Finger, R. (2022): Pesticide-free but not organic: Adoption of a large-scale wheat production standard in Switzerland. Food Policy 106. https://doi.org/10.1016/j.foodpol.2021.102188. DOI: https://doi.org/10.1016/j.foodpol.2021.102188
Mußhoff, O., Hirschauer, N. (2007a): Improved program planning with formal models? The case of high risk crop farming in Northeast Germany. Central European Journal of Opera-tions Research 15: 127-141. https://doi.org/10.1007/s10100-007-0022-2. DOI: https://doi.org/10.1007/s10100-007-0022-2
Mußhoff, O., Hirschauer, N. (2007b): What benefits are to be derived from improved farm program planning approaches? - The role of time series models and stochastic optimiza-tion. Agricultural Systems 95.1-3: 11-27. https://doi.org/10.1016/j.agsy.2007.03.007. DOI: https://doi.org/10.1016/j.agsy.2007.03.007
Nitzko, S., Bahrs, E., Spiller, A. (2024): Consumer willingness to pay for pesticide-free food products with different processing degrees: Does additional information on cultivation have an influence? Farming System 2.1. https://doi.org/10.1016/j.farsys.2023.100059. DOI: https://doi.org/10.1016/j.farsys.2023.100059
Pawelzik, E., Möller, K. (2014): Sustainable Potato Production Worldwide: the Challenge to Assess Conventional and Organic Production Systems. Potato Research. 57: 273-290. https://doi.org/10.1007/s11540-015-9288-2. DOI: https://doi.org/10.1007/s11540-015-9288-2
Pergner, I., Lippert, C. (2023): On the effects that motivate pesticide use in perspective of designing a cropping system without pesticides but with mineral fertilizer—a review. Agronomy for Sustainable Development 43.2. https://doi.org/10.1007/s13593-023-00877-w. DOI: https://doi.org/10.1007/s13593-023-00877-w
Pergner, I., Lippert, C., Piepho, H.-P., Schwarz, J., Kehlenbeck, H. (2024): How to determine temporal yield variances of various cropping systems for modelling farmers’ production risk - Illustrated by results from a long-term field trial. European Journal of Agronomy 152. https://doi.org/10.1016/j.eja.2023.127005. DOI: https://doi.org/10.1016/j.eja.2023.127005
Pimentel, D., Hepperly, P., Hanson, J., Douds, D., Seidel, R. (2005): Environmental, Energet-ic, and Economic Comparisons of Organic and Conventional Farming Systems. BioSci-ence 55.7: 573-582. https://doi.org/10.1641/0006-3568(2005)055[0573:EEAECO]2.0.CO;2. DOI: https://doi.org/10.1641/0006-3568(2005)055[0573:EEAECO]2.0.CO;2
Reckling, M., Döring, T.F., Bergkvist, G., Stoddard, F.L., Watson, C.A., Seddig, S., Chmielewski, F.-M., Bachinger, J. (2018): Grain legume yields are as stable as other spring crops in long-term experiments across northern Europe. Agronomy for sustainable development 38: 1-10. https://doi.org/10.1007/s13593-018-0541-3. DOI: https://doi.org/10.1007/s13593-018-0541-3
Reckling, M., Hecker, J.-M., … , Bachinger, J. (2016): A cropping system assessment framework—Evaluating effects of introducing legumes into crop rotations. European Jour-nal of Agronomy 76: 186-197. https://doi.org/10.1016/j.eja.2015.11.005. DOI: https://doi.org/10.1016/j.eja.2015.11.005
Röder, N., Laggner, B., Reiter, K., Offermann, F. (2021): Ausgestaltung der Ökoregelungen in Deutschland - Stellungnahmen für das BMEL. Band 2: Schätzung der Inanspruchnahme der Regelungen auf Basis das Kabinettsentwurfes des GAPDZG. Thünen Working Paper, Braunschweig.
Schmidt, F., Böhm, H., Piepho, H.-P., Urbatzka, P., Wachendorf, M., Graß, R. (2023): Yield stability of silage maize double cropping systems across nine German environments. Fron-tiers in Agronomy 5. https://doi.org/10.3389/fagro.2023.1235034. DOI: https://doi.org/10.3389/fagro.2023.1235034
Seitz, R. (2022): Mehr Öko, weniger Weizen. Statistisches Monatsheft Baden-Württemberg 10/2022. https://www.statistik-bw.de/Service/Veroeff/Monatshefte/20221006.
Seufert, V., Ramankutty, N., Foley, J.A. (2012): Comparing the yields of organic and conven-tional agriculture. Nature 485.7397: 229-232. https://doi.org/10.1038/nature11069. DOI: https://doi.org/10.1038/nature11069
Seufert, V. (2019): Comparing Yields: Organic Versus Conventional Agriculture. In: Encyclo-pedia of Food Security and Sustainability. Volume 3: Sustainable Food Systems and Agri-culture: 169-208. https://doi.org/10.1016/B978-0-08-100596-5.22027-1. DOI: https://doi.org/10.1016/B978-0-08-100596-5.22027-1
Sieling, K., Christen, O. (2015): Crop rotation effects on yield of oilseed rape, wheat and bar-ley and residual effects on the subsequent wheat. Archives of Agronomy and Soil Science 61.11: 1531-1549. https://doi.org/10.1080/03650340.2015.1017569. DOI: https://doi.org/10.1080/03650340.2015.1017569
Söder, M, Berg-Mohnicke, M, … , Shawon, A.R. (2022): Klimawandelbedingte Ertragsverän-derungen und Flächennutzung (KlimErtrag). Thünen Working Paper 198, Braunschweig.
Statistische Ämter des Bundes und der Länder (2023): Ernte- und Betriebsberichterstattungen (EBE). https://www.regionalstatistik.de/genesis/online?operation=previous&levelindex=1&step=1&titel=Statistik+%28Tabellen%29&levelid=1673260756905&acceptscookies=false#abreadcrumb, accessed 9 January 2023.
Statistisches Landesamt Baden-Württemberg (2022): Bodennutzung: Anbauflächen aller Kul-tur- und Nutzungsarten seit 2010. https://www.statistik-bw.de/Landwirtschaft/Bodennutzung/LF-NutzngKultFrucht.jsp, accessed 9 January 2023.
Stevanato, P., Chiodi, C. Broccanello, C., Concheri, G., Biancardi, E., Pavli, O., Skaracis, G. (2019): Sustainability of the Sugar Beet Crop. Sugar Tech 21: 703-716. https://doi.org/10.1007/s12355-019-00734-9. DOI: https://doi.org/10.1007/s12355-019-00734-9
Suvanto, H., Niemi, J.K., Lähdesmäki, M. (2020): Entrepreneurial identity and farmers' pro-tein crop cultivation choices. Journal of Rural Studies 75:174-184. https://doi.org/10.1016/j.jrurstud.2020.01.022. DOI: https://doi.org/10.1016/j.jrurstud.2020.01.022
Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (2014): Humusbilanzierung: Eine Methode zur Analyse und Bewertung der Humusversorgung von Ackerland, Speyer. https://www.vdlufa.de/fachinformationen-35/humusbilanzierung/, ac-cessed 16 August 2023.
Wendt, M.-C., Weinrich, R. (2023): Consumer Segmentation for Pesticide-free Food Prod-ucts in Germany. Sustainable Production and Consumption 42: 309-321. https://doi.org/10.1016/j.spc.2023.10.005. DOI: https://doi.org/10.1016/j.spc.2023.10.005
Zentrale Markt- und Preisberichtstelle GmbH (2002): ZMP-Marktbilanz: Deutschland, EU, Welt: Getreide, Ölsaaten, Futtermittel 2002. Markt Bilanz Getreide Ölsaaten Futtermittel, Bonn.
Zentrale Markt- und Preisberichtstelle GmbH (2005): ZMP-Marktbilanz: Deutschland, EU, Welt: Getreide, Ölsaaten, Futtermittel 2005. Markt Bilanz Getreide Ölsaaten Futtermittel, Bonn.
Zimmermann, B., Claß-Mahler, I., … , Bahrs, E. (2021): Mineral-Ecological Cropping Sys-tems—A New Approach to Improve Ecosystem Services by Farming without Chemical Synthetic Plant Protection. Agronomy 11.9. https://doi.org/10.3390/agronomy11091710. DOI: https://doi.org/10.3390/agronomy11091710
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Isabell Pergner, Christian Lippert

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Bundesministerium für Bildung und Forschung
Grant numbers 031B0731A “Agriculture 4.0 without Chemical-Synthetic Plant Protection (NOcsPS)”