Public Acceptance of Robots and Autonomous Crop Farming – A Cluster Analysis of German Citizens’ Attitudes and Concerns
DOI:
https://doi.org/10.52825/gjae.v74i.2283Keywords:
Autonomous Crop Farming, Responsible Research and Innovation, Public Acceptance, PAM ClusteringAbstract
Public acceptance is essential for technology innovation in agriculture. Due to the recent advances in artificial intelligence, robotics and autonomous systems (RAS) could soon revolutionize crop farming landscapes. What is society's view on crops being produced with the help of autonomous machines and how do different groups accept the technologies? A sample of 567 German citizens was segmented into clusters using an unsupervised machine-learning technique. The analysis elaborated on heterogeneity in public attitudes concerning challenges and advances of RAS and investigated political attitudes in relation to RAS attitudes. A majority of the participants are in favor of the use of RAS. While 41% of the participants positioned themselves as positive (Proponents), about 19% even showed a strong positive attitude towards RAS use (Enthusiasts). The ease of farm work and environmental benefits drive RAS acceptance among Proponents and Enthusiasts. Nevertheless, 29% support RAS use overall but raise concerns regarding socio-economic impacts (Skeptical Proponents), and 11% (Skeptics) take a skeptical stance. Skeptical Proponents and Skeptics fear negative consequences for family farms and are doubtful about potential positive environmental contributions. A higher share of right-wing and non-voter participants is detected among the more skeptical clusters, while green (environmental) party voters are among the more positive participants. Potential concerns should be recognized and addressed by the farming sector on the development path to more automated agriculture. Food production is a sensitive topic affecting everyone, which should be considered in communication efforts. The advantages of RAS technologies need to be articulated through targeted scientific communication.
Downloads
References
AfD (Alternative für Deutschland) (2021): Deutschland. Aber normal. https://www.afd.de/wahlprogramm/, accessed: November 15, 2024.
AfD (Alternative für Deutschland) (2023): Leitbild für eine alternative Agrar-, Forst- und Er-nährungspolitik. https://afdbundestag.de/afd-fraktion-beschliesst-neues-leitbild-fuer-eine-alternative-agrar-forst-und-ernaehrungspolitik/, accessed: November 15, 2024.
Archer, D.W., Dawson, J., Kreuter, U.P., Hendrickson, M., Halloran, J.M. (2008): Social and political influences on agricultural systems. Renewable Agriculture and Food Systems 23 (4): 272-284. https://doi.org/10.1017/S174217050700169X.
Arneth, A., Sitch, S., Pongratz, J., Stocker, B.D., Ciais, P., Poulter, B. et al. (2017): Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nature Geoscience 10 (2): 79-84. https://doi.org/10.1038/ngeo2882.
Bergstrom, A., Nowatzki, J., Witt, T., Barnhart, I., Krueger, J., Askelson, M. et al. (2022): Pro-tecting farm privacy while researching large‐scale unmanned aircraft systems platforms for agricultural applications. Agronomy Journal 114 (5): 2700-2714. https://doi.org/10.1002/agj2.21054.
Bieberstein, A. (2014): An Investigation of Women's and Men’s Perceptions and Meanings Associated with Food Risks. Springer VS, Wiesbaden.
Blok, V., Long, T.B. (2016): The role of responsible innovation in the technology assessment of smart farming technologies in Europe. Food futures: Ethics, science and culture. Wa-geningen Academic Publishers, Wageningen.
Boogaard, B.K., Bock, B.B., Oosting, S.J., Wiskerke, J.S.C., van der Zijpp, A.J. (2011): So-cial Acceptance of Dairy Farming: The Ambivalence Between the Two Faces of Moderni-ty. Journal of Agricultural and Environmental Ethics 24 (3): 259-282. https://doi.org/10.1007/s10806-010-9256-4.
Botyarov, M., Miller, E.E. (2022): Partitioning around medoids as a systematic approach to generative design solution space reduction. Results in Engineering 15: 100544. https://doi.org/10.1016/j.rineng.2022.100544.
Bündnis 90/Die Grünen (2021): Grünes Wahlprogramm zur Bundestagswahl 2021. https://www.gruene.de/artikel/wahlprogramm-zur-bundestagswahl-2021, accessed: No-vember 15, 2024.
Busch, G., Bayer, E., Spiller, A., Kühl, S. (2022): ‘Factory farming’? Public perceptions of farm sizes and sustainability in animal farming. PLOS Sustainability and Transformation 1 (10): e0000032. https://doi.org/10.1371/journal.pstr.0000032.
CDU (Christlich Demokratische Union Deutschlands) (2021): Ein guter Plan für Deutschland. https://www.cdu.de/artikel/ein-guter-plan-fuer-deutschland, accessed: November 15, 2024.
Clulow, Z., Ferguson, M., Ashworth, P., Reiner, D. (2021): Comparing public attitudes towards energy technologies in Australia and the UK: The role of political ideology. Global Envi-ronmental Change 70: 102327. https://doi.org/10.1016/j.gloenvcha.2021.102327.
Condon, H.H. (1940): Driverless tractor plants crops in spirals. Popular Mechanics 1 (7).
Damelang, A., Otto, M. (2023): Who is Replaced by Robots? Robotization and the Risk of Unemployment for Different Types of Workers. Work and Occupations 51 (2): 181-206. https://doi.org/10.1177/07308884231162953.
Debus, M. (2009): Analysing Party Politics in Germany with New Approaches for Estimating Policy Preferences of Political Actors. German Politics 18 (3): 281-300. https://doi.org/10.1080/09644000903055773.
Ditzler, L., Driessen, C. (2022): Automating Agroecology: How to Design a Farming Robot Without a Monocultural Mindset? Journal of agricultural environmental ethics 35 (2): 2. https://doi.org/10.1007/s10806-021-09876-x.
Domingo, J., Kutsyr-Kolesnyk, O., Leon, T., Perez-Moraga, R., Ayala, G., Roson, B. (2023): A cell abundance analysis based on efficient PAM clustering for a better understanding of the dynamics of endometrial remodeling. BMC Bioinformatics 24: 440. https://doi.org/10.1186/s12859-023-05569-6.
Eastwood, C., Klerkx, L., Ayre, M., Dela Rue, B. (2019): Managing Socio-Ethical Challenges in the Development of Smart Farming: From a Fragmented to a Comprehensive Approach for Responsible Research and Innovation. Journal of Agricultural and Environmental Eth-ics, 32: 741-768. https://doi.org/10.1007/s10806-017-9704-5.
Emmann, C.H., Arens, L., Theuvsen, L. (2013): Individual acceptance of the biogas innova-tion: A structural equation model. Energy Policy 62: 372-378. https://doi.org/10.1016/j.enpol.2013.07.083.
FDP (Freie Demokratische Partei) (2021): Nie gab es mehr zu tun. https://www.fdp.de/nie-gab-es-mehr-zu-tun, accessed: November 15, 2024.
Feisthauer, P., Hartmann, M., Börner, J. (2023): Adoption intentions of smart weeding tech-nologies - A lab-in-the-field experiment with German crop farmers. Q Open 4 (1): qoae002. https://doi.org/10.1093/qopen/qoae002.
Gerhards, R., Risser, P., Spaeth, M., Saile, M., Peteinatos, G. (2023): A comparison of seven innovative robotic weeding systems and reference herbicide strategies in sugar beet (Beta vulgaris subsp. vulgaris L.) and rapeseed (Brassica napus L.). Weed Research 64 (1): 1-12. https://doi.org/10.1111/wre.12603.
Gil, G., Casagrande, D., Cortés, L. P., Verschae, R. (2023): Why the low adoption of robotics in the farms? Challenges for the establishment of commercial agricultural robots. Smart Agricultural Technology 3: 100069. https://doi.org/10.1016/j.atech.2022.100069.
Hair, J.F. (2009): Multivariate data analysis. 7th ed. Pearson Prentice Hall, Kansas.
Heinisch, R., Werner, A. (2019): Who Do Populist Radical Right Parties Stand for? Repre-sentative Claims, Claim Acceptance and Descriptive Representation in the Austrian FPÖ and German AfD. Representation 55 (4): 475-492. https://doi.org/10.1080/00344893.2019.1635196.
Jacobucci, R. (2022): A critique of using the labels confirmatory and exploratory in modern psychological research. Frontiers in Psychology 13: 1020770. https://doi.org/10.3389/fpsyg.2022.1020770.
Khasawneh, O.Y. (2018): Technophobia: Examining its hidden factors and defining it. Tech-nology in Society 54: 93-100. https://doi.org/10.1016/j.techsoc.2018.03.008.
Koch, C.M., Melendez, C. Kaltwasser, R.C. (2023): Mainstream Voters, Non-Voters and Populist Voters: What Sets Them Apart? Political Studies 71 (3): 893-913. https://doi.org/10.1177/00323217211049298.
Kupidura, A., Łuczewski, M., Home, R., Kupidura, P. (2014): Public perceptions of rural land-scapes in land consolidation procedures in Poland. Land Use Policy 39: 313-319. https://doi.org/10.1016/j.landusepol.2014.02.005.
Langer, G., Kühl, S. (2023): Perception and acceptance of robots in dairy farming - a cluster analysis of German citizens. Agriculture and Human Values 41: 249-267. https://doi.org/10.1007/s10460-023-10483-x.
Lesmeister, C. (2015): Mastering machine learning with R: Master machine learning tech-niques with R to deliver insights for complex projects. Packt Publishing, Birmingham.
Mohr, S., Höhler, J. (2023): Media coverage of digitalization in agriculture - an analysis of media content. Technological Forecasting and Social Change 187: 122238. https://doi.org/10.1016/j.techfore.2022.122238.
Parlasca, M.C., Qaim, M. (2022): Meat Consumption and Sustainability. Annual Review of Resource Economics 14: 17-41. https://doi.org/10.1146/annurev-resource-111820-032340.
Pfeiffer, J., Gabriel, A., Gandorfer, M. (2021): Understanding the public attitudinal acceptance of digital farming technologies: a nationwide survey in Germany. Agriculture and Human Values 38: 107-128. https://doi.org/10.1007/s10460-020-10145-2.
Qaim, M. (2020): Role of New Plant Breeding Technologies for Food Security and Sustaina-ble Agricultural Development. Applied Economic Perspectives and Policy 42 (2): 129-150. https://doi.org/10.1002/aepp.13044.
Redhead, F., Snow, S., Vyas, D., Bawden, O., Russell, R., Perez, T. et al. (2015): Bringing the Farmer Perspective to Agricultural Robots. Proceedings of the 33rd Annual ACM Con-ference Extended Abstracts on Human Factors in Computing Systems: 1067-1072. https://doi.org/10.1145/2702613.2732894.
Rübcke von Veltheim, F., Theuvsen, L., Heise, H. (2022): German farmers’ intention to use autonomous field robots: a PLS-analysis. Precision Agriculture 23: 670-697. https://doi.org/10.1007/s11119-021-09854-3.
Saleh, R., El Benni, N., Masson, S., Ammann, J. (2024): Public acceptance and sustainability perceptions of food produced with chemical, digital and mechanical weed control measures. Food Quality and Preference 113: 105079. https://doi.org/10.1016/j.foodqual.2023.105079.
Solomon, M.R. (2006): Consumer behaviour. A European perspective. 3rd ed. Financial Times/Prentice Hall, Harlow England, New York: 139-167.
Smith, W.R. (1956): Product differentiation and market segmentation as alternative marketing strategies. Journal of marketing 21 (1): 3-8.
Sparrow, R., Howard, M. (2021): Robots in agriculture: prospects, impacts, ethics, and policy. Precision Agriculture 22: 818-833. https://doi.org/10.1007/s11119-020-09757-9.
Spykman, O., Emberger-Klein, A., Gabriel, A., Gandorfer, M. (2022): Autonomous agriculture in public perception - German consumer segments’ view of crop robots. Computers and Electronics in Agriculture 202: 107385. https://doi.org/10.1016/j.compag.2022.107385.
SPD (Sozialdemokratische Partei Deutschlands) (2021): Das Zukunftsprogramm. https://www.spd.de/programm/zukunftsprogramm, accessed: November 15, 2024.
Upham, P., Oltra, C., Boso, À. (2015): Towards a cross-paradigmatic framework of the social acceptance of energy systems. Energy Research Social Science 8: 100-112. https://doi.org/10.1016/j.erss.2015.05.003.
van der Burg, S., Wiseman, L., Krkeljas, J. (2021): Trust in farm data sharing: reflections on the EU code of conduct for agricultural data sharing. Ethics and Information Technology 23: 185-198. https://doi.org/10.1007/s10676-020-09543-1.
van Vliet, J.A., Schut, A.G., Reidsma, P., Descheemaeker, K., Slingerland, M., van de Ven, G.W. et al. (2015): De-mystifying family farming: Features, diversity and trends across the globe. Global Food Security 5: 11-18. https://doi.org/10.1016/j.gfs.2015.03.001.
Vanhonacker, F., Verbeke, W., van Poucke, E., A.M. Tuyttens, F. (2007): Segmentation Based on Consumers' Perceived Importance and Attitude toward Farm Animal Welfare. The International Journal of Sociology of Agriculture and Food 15 (3): 91-107. https://doi.org/10.48416/ijsaf.v15i3.286.
Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D. (2003): User Acceptance of Infor-mation Technology: Toward a Unified View. MIS Quarterly 27 (3): 425-478. https://doi.org/10.2307/30036540.
Wilmes, R., Waldhof, G., Breunig, P. (2022): Can digital farming technologies enhance the willingness to buy products from current farming systems? PloS One 17 (11): e0277731. https://doi.org/10.1371/journal.pone.0277731.
World Bank (2023): World Development Indicators. https://databank.worldbank.org/reports.aspx?source=world-development-indicators, ac-cessed: November 15, 2024.
Wu, B., Lu, J., Zhou, B., Song, Z. (2023): Exploring consumers' environmental ethical prefer-ences in the context of unmanned aerial vehicle utilization for plant protection. Scientific Reports, 13: 3716. https://doi.org/10.1038/s41598-023-30557-4.
Wüstenhagen, R., Wolsink, M., Bürer, M.J. (2007): Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy 35 (5): 2683-2691. https://doi.org/10.1016/j.enpol.2006.12.001.
Xu, K. (2019): First encounter with robot Alpha: How individual differences interact with vocal and kinetic cues in users’ social responses. New Media Society 21 (11-12): 2522-2547. https://doi.org/10.1177/1461444819851479.
Yoo, W., Yu, E., Jung, J. (2018): Drone delivery: Factors affecting the public’s attitude and intention to adopt. Telematics and Informatics 35 (6): 1687-1700. https://doi.org/10.1016/j.tele.2018.04.014.
Zeddies, H.H., Busch, G., Qaim, M. (2024): Positive public attitudes towards agricultural ro-bots. Scientific Reports 14: 15607. https://doi.org/10.1038/s41598-024-66198-4.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hendrik Hilmar Zeddies, Gesa Busch

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-02-07
Published 2025-03-31
Funding data
-
Deutsche Forschungsgemeinschaft
Grant numbers EXC 2070–390732324-PhenoRob