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Abstract 
Official statistics are often based on samples repre-
senting a certain population. Because participation in 
a sample is usually voluntary, bias might result from 
so-called non-sampling errors such as nonresponse. 
Weighting procedures are intended to correct these 
errors by assigning a certain weight to each observa-
tion in the sample. In many official agricultural statis-
tics, such as the Bavarian Agricultural Report, post-
stratification is used. In this process, the population is 
stratified according to different dimensions (e.g. farm 
type, farm location and farm size) and weights are 
assigned to all farms in a stratum so that the sum of 
the weights in that stratum corresponds to the number 
of observations in that stratum in the population. 
However, when estimating the population average, 
important characteristics (such as the farm size) may 
still be biased. Using a Bavarian farm sample, the 
present study shows how the so-called calibration 
approach, utilising auxiliary variables to adjust 
weights, outperforms the poststratification procedure 
in terms of estimating important population charac-
teristics. 
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mation; design-based estimation; weighting adjustment. 

1 Introduction 
The application of statistical inference can be an easy 
and straightforward endeavour in presence of ideal 
statistical conditions. These conditions are given when 
non-sampling errors are absent, such as nonresponse, 
measurement error or frame imperfection. However, 
in practice, this is seldom the case. 

In absence of ideal statistical conditions, when 
carrying out parameter estimations, the error is formed 
by two components: sampling or random error  
and non-sampling or systematic errors. The first-
mentioned is impossible to eliminate completely  
owing to the nature of sampling, where parameters are 
estimated only by means of a sample. The sampling 
error is characterised by the variance or standard error 
of the estimates, given that other errors are absent. 
The non-sampling errors, such as coverage or nonre-
sponse errors, might be reduced at the sampling stage. 
However, it is not always possible to intervene sub-
stantially at the sampling stage in order to reduce non-
sampling errors. Once the sampling is concluded, 
different techniques can be employed at the estimation 
stage to adjust the weights according to auxiliary in-
formation. 

An important source of non-sampling error is 
nonresponse. In the literature, nonresponse is regular-
ly differentiated into two types: item and unit nonre-
sponse (SÄRNDAL and LUNDSTRÖM, 2005). Item  
nonresponse occurs when, for various reasons, only 
part of a questionnaire is answered, whereas unit  
nonresponse is given when the survey response from 
selected elements is not obtainable (KALTON and 
KASPRZYK, 1986; BETHLEHEM, 2009). Thus, with 
unit nonresponse, the required sample data determined 
by the sample allocation is not fully obtained. This is 
a major concern because it is an important source of 
bias for estimates of population features. Moreover, in 
case of a reduced number of respondents, the variance 
might augment (SÄRNDAL and LUNDSTRÖM, 2005). 
However, this is considered a minor problem when 
facing bias. 

Statistical inference and, more specifically, esti-
mation is applied in many fields. Agriculture is no 
exception: The Bavarian Agricultural Report (BAR),  
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estimating farm income, has its origin in a resolution 
of the Bavarian State Parliament from 1971. From its 
first publication, a core issue of the report was the 
description of the economic situation of the Bavarian 
agriculture. The survey that serves for the estimation 
is based on the information contained in the financial 
statements provided by the Bavarian test farms net-
work. Prior to 1978, the information was presented as 
unweighted averages. Thereafter, a weighted estima-
tion was introduced.  

The aim of the survey is to obtain as much in-
formation as possible about different population pa-
rameters, such as means and ratios, by using statistical 
inference, so that it can be used to describe the whole 
population. However, information is also needed at 
different domain levels (such as regions or farm 
types). The disaggregated information allows, for 
instance, to better formulate and monitor regional 
policies such as the allocation of funds. 

The BAR sampling design is based on a stratified 
sampling procedure (i.e. the target population is sub-
divided according to different dimensions such as 
farm size). Because the participation in the survey is 
not mandatory, there is both overrepresentation and 
underrepresentation in most strata derived from unit 
nonresponse. Nonresponse is an intrinsic aspect of 
surveys nowadays, and it is also the case for the Ba-
varian test farms network; it is undesirable because it 
can substantially affect the accuracy of estimates. To 
reduce the adverse impacts of nonresponse, the cur-
rent estimation method employs a poststratified esti-
mator. Nevertheless, the quality of the estimation can 
still be improved by adjusting the estimation weights 
using additional information through quantitative aux-
iliary variables. This is what the so-called calibration 
approach pursues. 

The objective of this paper is to provide a step-
by-step procedure for practitioners in agricultural 
statistics – a cookbook so to speak – to improve the 
quality of estimates by applying the calibration ap-
proach, because as far as we know, this method is not 
widely employed in Germany for income estimation 
in the agricultural sector. For this purpose, we used 
the BAR sample and auxiliary information from the 
Integrated Administration and Control System (IACS) 
dataset, in order to illustrate the improvements that 
can be achieved by means of the calibration approach, 
compared with poststratification, but, as well, to show 
that the IACS dataset could represent a reliable source 
of information for such a purpose.  

With this objective, the next section presents the 
employed datasets that served for the weights adjust- 

ment and for the estimation. The third section de-
scribes the methodological framework used for the 
current estimation (as conducted by the Bavarian State 
Ministry of Food, Agriculture and Forestry) and for 
the calibration approach. Next, in the fourth section, 
the different estimation methods are put side by side 
to determine empirically the advantages of the adjust-
ed weights obtained by means of the calibration ap-
proach over the poststratified estimator. Last, we pre-
sent the main conclusions derived from the study. 

2  Data 
For the present analysis, two data sources were used 
from the IACS and from the Bavarian test farms net-
work. Data refer to the fiscal year 2013/2014. 

The IACS dataset consists of a series of intercon-
nected databases used to monitor the direct payments 
of the Common Agricultural Policy. In this analysis, 
the dataset is used to determine the target population 
and to provide the auxiliary variables for calibrating 
the design weights, such as the hectares of the utilised 
agricultural area (UAA) and the number of livestock 
units (LSU). The target population consists of farms 
with a standard output (SO) greater than 25,000 €. 
More precisely, the small and part-time farms are 
represented by those with a SO between 25,000 € and 
50,000 €, while full-time farms are represented by 
those with a SO of at least 50,000 €. The resulting 
target population consists of 56,569 farms. Of these, 
35,972 are full-time farms and 20,597 are small and 
part-time farms. 

The Bavarian test farms network provides the 
sample that serves for the estimation of population 
characteristics (e.g. farm income) and consists of 
2,696 farms for the analysed year. It contains 1,975 
full-time farms and 721 small and part-time farms. 
The average nonresponse rate is about 62% and espe-
cially by farms under 30 ha which explains the slight 
overrepresentation of full-time farms in the sample. 
By using a unique identifier, auxiliary information 
from the IACS dataset can be merged to the Bavarian 
test farms.  

3 Methodology 
The sampling design is based on a stratified sample 
with 𝐻𝐻 strata and ℎ = {1, … ,𝐻𝐻} in order to achieve 
two key objectives. In the first place, it aims to improve 
the quality of estimation by creating homogeneous 
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strata from a heterogeneous sample. By this means, it 
is intended to obtain sample units with a variance 
within every stratum, smaller than the variance be- 
tween different strata (HANSEN et al., 1953; COCHRAN, 
1977; THOMPSON, 2002). Secondly, there is also a 
need for information at different levels, as it is the 
domain level.  

Predefined by the Bavarian State Ministry of 
Food, Agriculture and Forestry, the following criteria 
were taken into account to determine the strata: 
1. Type of engagement: full-time farms, and small 

and part-time farms. 
2. Farm location: northern and southern Bavaria. 
3. Farm type: field crops, grazing livestock, grani-

vores, mixed crops–livestock, viticulture, dairying, 
horticulture. 

4. Farm size: For the part-time farms, only size clas-
ses from >7.5 to ≤10 ha and from >10 to ≤30 ha 
are relevant, whereas for the full-time farms, only 
those from >10 to ≤30 ha, from >30 to ≤60 ha and 
from >60 to ≤200 ha are taken into account. 

As described in the introduction, estimators derived 
from samples may suffer from errors such as nonre-
sponse and frame imperfection. These errors can be 
mitigated by introducing weights to estimate sample 
means. Currently, a poststratified estimator is used for 
the BAR, based on the four already described criteria. 
However, this estimator may still provide biased esti-
mates, e.g. in the presence of correlation between 
target variables and response mechanism. This study 
determines to which extent a more advanced meth-
odological approach would be more suitable, i.e. the 
calibration approach that adjusts given weights (e.g. 
design weights) according to known population totals. 

3.1 Poststratified Estimator 
Under ideal statistical conditions, sample data, 𝑠𝑠 =
{1, … , 𝑖𝑖, … ,𝑛𝑛}, is expanded to the population level, 
𝑈𝑈 = {1, … , 𝑖𝑖, … ,𝑁𝑁} with 𝑠𝑠 ⊂ 𝑈𝑈, by means of design 
weights, which correspond to the inverse of the inclu-
sion probability, 𝜋𝜋𝑖𝑖. The design weights reflect the 
number of units in the population that are represented 
by one sampled unit. Thus, the weights are always 
greater than or equal to one, because each element is 
representing at least itself. 

However, in the presence of nonresponse, 𝑟𝑟 ⊂ 𝑠𝑠 
with 𝑟𝑟 = {1, … , 𝑖𝑖, … ,𝑚𝑚}, the design weights are con-
sidered to be on average too small to yield adequate 
estimates, so that they lead to an underestimation of 
the target variable, 𝑌𝑌. Thus, a poststratified estimator 
is used for the current estimation, as described by 

THOMSEN (1973) or COCHRAN (1977), where weights 
are adjusted in correspondence with the response rate 

𝑌𝑌��𝑃𝑃𝑃𝑃 =
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where 𝐻𝐻 represents the number of strata, 
𝑁𝑁 represents the number of units in the total population, 
𝑛𝑛ℎ represents the number of observations to be sam-
pled in the ℎth stratum (not considering non-
response), while 
𝑁𝑁ℎ and 𝑚𝑚ℎ represent the number of units and re-
spondents in the ℎth stratum, respectively. 

By this means, the estimation weights, 𝑤𝑤𝑃𝑃𝑃𝑃ℎ =
𝑁𝑁ℎ 𝑚𝑚ℎ⁄ , are corrected accounting for nonresponse, 
(𝑤𝑤𝑃𝑃𝑃𝑃ℎ stands for the poststratified weight a farm has in 
the ℎth stratum). In fact, the estimation can also be 
considered, as suggested by VANDERHOEFT (2001), as 
a two-step correction procedure 
𝑤𝑤𝑃𝑃𝑃𝑃ℎ = 𝑁𝑁ℎ

𝑛𝑛ℎ
 𝑛𝑛ℎ
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 (where 𝑑𝑑ℎ = 𝑁𝑁ℎ
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 represents 

the design weight and 𝑟𝑟𝑟𝑟ℎ = 𝑚𝑚ℎ
𝑛𝑛ℎ

 represents the re-

sponse rate for the ℎth stratum, respectively). In the 
first stage, weights are adjusted for nonresponse (re-
sponse rate), from 𝑟𝑟 (respondents) to 𝑠𝑠 (sample), and 
in the second stage, the information is expanded from 
the sample, 𝑠𝑠, to population level, 𝑈𝑈, correcting thus 
for sampling errors. However, when response behav-
iour across strata is not homogeneous (e.g. some farm 
types have a lower response rate; LITTLE, 1986) 
and/or there is an underlying correlation between the 
target variables and the response mechanism (e.g. 
farms with higher income tend to have a higher re-
sponse rate; BETHLEHEM, 2009), this method fails to 
produce unbiased estimates. This attribute can be im-
proved by a more thorough adjustment or, literally, by 
the calibration approach (KALTON and FLORES-
CERVANTES, 2003). Moreover, as described by 
SÄRNDAL and LUNDSTRÖM (2005), we will also be 
able to obtain consistent weights for a multipurpose 
survey. 

3.2 Calibration Estimator 
As previously explained, when facing nonresponse the 
design weights are too small, on average, to represent 
the population. For this reason, the design weights 
need to be adjusted to be in line with known external 
information. The calibration estimator, widely em-
ployed in the last decades, exploits the information 
obtained from auxiliary variables, adjusts the design 
weights, reduces bias (i.e. reduces differences in the 



GJAE 71 (2022), Number 4 

207 

sample and the population total) and increases effi-
ciency (i.e. reduces variance of the estimator). As it 
turns out, the poststratified estimator is a special case 
of the calibration estimator, because it only corrects 
for the number of observations in different strata but 
does not use further auxiliary variables. The poststrati-
fied estimator and the calibration estimator are similar 
when facing limited nonresponse rate or complete 
response (SÄRNDAL and LUNDSTRÖM, 2005). 

The basic idea of the calibration approach is to 
determine new weights, 𝑤𝑤𝑖𝑖, which satisfy the condi-
tion of being as close as possible to the design 
weights, 𝑑𝑑𝑖𝑖, according to the objective function (dis-
tance function), and fulfilling the constraints of the 
calibration function (DEVILLE and SÄRNDAL, 1992). 
This can be translated mathematically into minimising 
the distance function: 

𝑚𝑚𝑖𝑖𝑛𝑛
𝑤𝑤𝑖𝑖

 𝐷𝐷(𝑤𝑤,𝑑𝑑) = ∑ 𝑑𝑑𝑖𝑖𝐺𝐺(𝑤𝑤𝑖𝑖,𝑑𝑑𝑖𝑖)𝑛𝑛
𝑖𝑖=1 , (2) 

where 𝑑𝑑𝑖𝑖 represents the design weights and 𝐺𝐺(𝑤𝑤𝑖𝑖,𝑑𝑑𝑖𝑖) 
is the distance function, satisfying the calibration 
equations that serve as benchmark: 

∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 , (3) 

where 𝑥𝑥𝑖𝑖𝑖𝑖 stands for the 𝑗𝑗th auxiliary variable for the 
𝑖𝑖th unit, 𝑋𝑋𝑖𝑖 represents the calibration totals of the 𝑗𝑗th 
auxiliary variable, and 𝑤𝑤𝑖𝑖 is the calibration weight of 
the 𝑖𝑖th unit, subjected to the following boundary con-
straints: 

𝐿𝐿 ≤ 𝑤𝑤𝑖𝑖
𝑑𝑑𝑖𝑖
≤ 𝑈𝑈, with 0 ≤ 𝐿𝐿 ≤ 1 ≤ 𝑈𝑈. (4) 

When 𝑤𝑤𝑖𝑖 = 𝑑𝑑𝑖𝑖, then there is no need for an adjust-
ment. According to calibration equations, by using the 
new determined weights, it should be possible to esti-
mate the auxiliary variables’ totals with zero variance.  

When using the calibration approach, a certain 
response propensity is implicitly assumed, which can 
be inverse linear, exponential, logistic, or quadratic. 
Therefore, it is highly important to ensure that bias is 
reduced, independently of the response mechanism. 
For this objective, in a first phase, we have deter-
mined the relationship between the auxiliary variables 
and the parameters of interest. In a second phase, con-
ditioned by the first, the distance function that best 
meets our objectives has been chosen (HAZIZA and 
LESAGE, 2016). To ensure that calibration weights are 
neither negative nor extreme, boundaries for the de-
sign weight adjustment factor are introduced.  

However, regardless of the chosen calibration 
method and the consistency of the auxiliary information, 
we must be aware that, regarding the variable of 

interest, bias could still be present when there is non-
response. The key question is then, how to reduce bias 
to an acceptable minimum. HAZIZA and LESAGE 
(2016) showed that improved auxiliary information, 
i.e. more ‘informative’ variables, is the fundamental 
answer to this issue. Therefore, the quality of the ad-
justed weights depends on the availability of good and 
robust auxiliary information. For this reason, building 
consistent auxiliary vectors is crucial to achieve our 
target. 

When non-random nonresponse is not neutralised 
through adjustments, it can be an important cause of 
bias, especially when variables determining nonre-
sponse are related to target variables. Even when a 
small variance is obtained, the quality of estimates 
could be strongly affected. Therefore, the focus 
should be on reducing bias as far as possible. For this, 
the selection of auxiliary variables is the central con-
cept within this approach. Even though, as mentioned 
by SÄRNDAL and LUNDSTRÖM (2005), the selection 
process of the relevant variables is to a certain extent 
based on a heuristic approach, the coefficient of corre-
lation between target variables and auxiliary variables 
could form a decisive criterion. 

For our analysis, considering the available infor-
mation from the IACS dataset, we have employed the 
information at population level (𝑈𝑈), where infor-
mation for respondents (𝑟𝑟) is available as well as the 
vector of population totals (𝑋𝑋 = ∑ 𝑥𝑥𝑈𝑈 ). 

4 Estimates Comparison 
As highlighted previously, it is important to detect in a 
first stage the relationship between the auxiliary vari-
able(s) and the target variable(s), in order to be able to 
choose in a second stage the adequate distance func-
tion. Using correlation analysis, we have chosen LSU 
for dairying, grazing livestock, granivores, and mixed 
crops–livestock. UAA has been employed for field 
crops, viticulture, and horticulture. The calibration of 
specific variables for specific farm types was achieved 
by setting these variables to zero for other (irrelevant) 
farm types.1 To illustrate the quality of the results, we 
have estimated the following target variables: total 
income, profit, and standard gross margin (SGM). The 
relationship between auxiliary variables and target 

                                                           
1  This means that the sample and the target population 

have an average value of zero for these variables. There-
fore, the target is already met, and these variables are 
not calibrated in strata where they are of no relevance. 



GJAE 71 (2022), Number 4 

208 

variables proved to be roughly linear with an average 
correlation coefficient of 0.53.  

For our purpose, according to HAZIZA and LESAGE 
(2016), the most suitable distance function, 𝐺𝐺, would 
be the truncated linear model: 

𝐺𝐺(𝑤𝑤𝑖𝑖,𝑑𝑑𝑖𝑖) = (𝑤𝑤𝑖𝑖 − 𝑑𝑑𝑖𝑖)2 2𝑑𝑑𝑖𝑖⁄ . (5) 

To allow meaningful interpretation of the dataset em-
ployed in the present work, the distance function 
should yield strictly positive weights.  

Additionally, this function allows to control  
the range of the correction weights, also called 𝑔𝑔-
𝑤𝑤𝑤𝑤𝑖𝑖𝑔𝑔ℎ𝑡𝑡𝑠𝑠, 𝑔𝑔𝑖𝑖ℎ, i.e. to assure that weights are neither 
negative nor too large. The algorithm used for the 
calibration has been implemented using the open-
source software R (R CORE TEAM, 2017) extended by 
the ‘sampling’ package (TILLÉ and MATEI, 2016). 

To describe the Bavarian agriculture as accurate-
ly and precisely as possible, the weights have been 
calibrated on different levels that were chosen accord-
ing to a heuristic process:  
 Region: land area and LSU 
 Strata: number of farms 
The calibration matrix, 𝑋𝑋𝑖𝑖, has been built using the 
information according to the previously mentioned 
levels to assure consistency not only at an aggregated 
level but also at a disaggregated level, i.e. population 
and domain level. 

The final weights, i.e. the calibrated weights, have 
been calculated by multiplying the design weights, 

𝑑𝑑𝑖𝑖ℎ, with the resulting factor of correction (𝑔𝑔-
𝑤𝑤𝑤𝑤𝑖𝑖𝑔𝑔ℎ𝑡𝑡𝑠𝑠) obtained from the optimisation program. 

4.1 Distribution of Weights 
Figure 1 shows the distribution of initial or design 
weights (light blue) and the corrected or calibrated 
weights (grey) regarding the frequency of their occur-
rence. Overlaps are represented in dark blue. From 
this chart, we can assure that the calibrated weights 
are neither negative nor less than one. Noteworthy is 
that the calibration procedure has determined a reduc-
tion in the distribution of the weights, clustering them 
towards the lower bottom, prompting by this means a 
reduction in frequency of calibrated weights above 25. 
On the other hand, the calibration has produced a few 
relatively high weights, which may suggest that the 
design weights due to nonresponse would have been 
relatively too low for some observations.  

When confronting the calibrated weights (grey) 
with the poststratification weights (light blue) in  
Figure 2, it can be observed that the distributions of 
both weights have similar patterns (overlaps are repre-
sented in dark blue). This result is to some extent  
expected, because poststratification is also considered 
to belong to the greater family of weighting adjust-
ment methods. Nevertheless, as will be shown below, 
the relatively small differences are key for the quality 
of the estimates. The large calibration weights are 
nearly identical to those originating from poststratifi-
cation. 

Figure 1.  Distribution of calibrated and  
design weights for 2013/2014 

 
Source: own calculations 

Figure 2.  Distribution of calibrated and  
poststratified weights for 2013/2014 

 
Source: own calculations 
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4.2 Accuracy 
Bias measures the accuracy of an estimated parameter, 
and it can be calculated only for variables that are 
available for the entire population and in the sample, 
such as LSU, UAA and SGM. For these variables, we 
calculated the population mean and compared it with 
a) the weighted mean calculated with the calibrated 
weights and b) the weighted mean calculated with 
poststratified weights. 

Table 1 displays the true mean of the Bavarian 
population and the two weighted means (derived from 
the sample) computed at population (Bavaria) and at 
regional level (North and South Bavaria), a more ag-
gregated domain level. Because we did not calibrate 
LSU and UAA for all farm types, it is noteworthy that 
the calibration approach does not estimate exactly the 
population means. The estimated means, however, 
match relatively closely the population means. This 
stands in stark contrast to the means estimated using 
poststratified weights. For LSU at population level, 
the estimated mean amounts to 69% of the true value, 
and for the UAA it is even more underestimated, with 
65% of the actual value. At the regional level, post-
stratified weights still considerably underestimate 
LSU and UAA, whereas the calibrated weights main-
tain the good estimation performance as it was the 
case at the population level. 

However, as already stated, we were also inter-
ested in obtaining accurate estimates at an even more 
disaggregated domain level. Therefore, the same 
comparison has been established but, in this case, 
according to the farm type. Likewise, at farm type 
level (Figure 3), the estimates for LSU and UAA 
using weights corrected by means of the calibration 

approach provide again a better adjust-
ment with respect to the population mean 
as compared with poststratification. In 
the case of field crops, the calibration 
estimation is identical to the population 
mean, whereas the poststratification un-
derestimates the true value by about 
25%. At this domain level, the calibra-
tion estimates do not perform as good as 
at a more aggregated level. Nevertheless, 
compared with poststratification, calibra-
tion provides more satisfactory results 
because the relative difference is negligi-
ble. A possible explanation for the con-
stant underestimation by poststratifica-
tion weights is that for the presented 
levels, the farms delivering data have on 

average a smaller UAA and less LSU than the actual 
farms in the population, independently of the present-
ed characteristic. The only exception is horticulture, 
where both weights overestimated the population 
mean. However, the calibration approach overesti-
mates only half as much as the poststratification 
weights. 

By means of the ad hoc procedure, we could as-
sure that the calibration approach assures, to a certain 
extent, the unbiasedness in comparison with the post-
stratified estimates. Thus, we can expand the analysis 
to additional variables. 

Because LSU and UAA were used as benchmark 
variables for the calibration, the previous results were 
as expected. Therefore, to assess further the quality of 

Figure 3.  Ad hoc bias comparison for livestock 
units and utilised agricultural area be-
tween population and estimated  
means (calibration and poststratifi- 
cation weights) at farm type level 

  
Source: own calculations 

Table 1.  Ad hoc bias comparison for livestock units (LSU) 
and utilised agricultural area (UAA) between  
population and estimated means (calibration and 
poststratification) at population and at domain  
level 

Characteristic IACS 
Estimation using 

calibrated weights 
Estimation using 

poststratified weights 
Average Discrepancy Average Discrepancy 

Bavaria 
LSU 51.96 51.93 −0.06% 35.74 −31.23% 
UAA 45.45 45.69 0.52% 29.44 −35.22% 

North 
LSU 52.17 52.17 0.00% 31.04 −40.50% 
UAA 50.64 50.83 0.39% 27.24 −46.20% 

South 
LSU 51.83 51.78 −0.10% 39.91 −22.99% 
UAA 41.95 42.21 0.62% 31.40 −25.16% 

IACS: Integrated Administration and Control System 
Source: own calculations 
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the calibrated estimation, we performed an estimation 
for a variable, the SGM, that we did not calibrate for 
but for which information exists at population and at 
sample level. At a more aggregated level, as can be 
noted in Figure 4, the estimation using calibrated 
weights produces more accurate results than poststrat-
ification at all three levels. The results suggest that 
farms having a higher SGM are more likely to partici-
pate in the sample. Weight calibration manages to 
compensate for this response behaviour, whereas 
poststratification fails to do so. 

Even at a more disaggregated level, as shown in 
Figure 5, the calibrated weights prove to yield results 
that are more accurate than the poststratified results. 
However, like in the case of dairy farms, calibration 
underestimates the true value, whereas poststratifica-
tion provides a more accurate result. Regarding viti-
culture and horticulture, both approaches underesti-
mate or overestimate the actual value to the same ex-
tent, respectively. However, in both cases the differ-
ences are negligible. 

Figure 6 shows the differences between poststrat-
ification and calibration estimates (i.e. poststratifica-
tion estimate minus calibration estimate) at population 
and regional level for two target variables, namely 
total income and profit. Given that poststratified 
weights are based on those farms that actually provide 
data, we might assume that, on average, there is a 

higher predisposition for more profitable farms to 
deliver accountancy information (see also Figure 4). 
Therefore, as stressed in Section 3.1, poststratified 
weights fail to produce unbiased estimates when there 
is an underlying correlation between the target varia-
bles and the response mechanism. 

Figure 7 presents the difference between post-
stratification and calibration estimates at a more dis-
aggregated level, i.e. at farm type level. Viticulture and 
horticulture, shown in Figure 7, are farm types where 
the poststratified weights seem to yield similar results 
as the calibrated ones. This would mean that the data-
delivering farms for these farm types could represent 
the average profit or total income. This observation 
seems to corroborate the findings from Figure 5. Re-
garding the rest of farm types, assuming that the cali-
brated estimates are almost unbiased, the responding 
farms seem to have higher profits or total incomes on 
average, i.e. responding farms are more profitable on 
average, as compared with the population.  

In theory, with increased sample size, the proba-
bility to yield biased estimators decreases. Because 
dairy farms are overrepresented in the sample, one 
could expect the bias of the poststratified estimator to 
be low. Given systematic nonresponse, however, this 
is not the case: despite the large sample size, poststrat-
ification weights seem to underestimate target varia-
bles of dairy farms. 

Figure 4.  Ad hoc bias comparison for standard 
gross margin between population and 
estimated means (calibration and post-
stratification weights)  

 
Source: own calculations 

Figure 5.  Ad hoc bias comparison for standard 
gross margin between population and 
estimated means (calibration and post-
stratification weights) at farm  
type level  

 
Source: own calculations 



GJAE 71 (2022), Number 4 

211 

5 Conclusion  
Sampling is an intrinsic part of official statistics be-
cause it substantially reduces the costs but also the 
tedious process of a census. However, sampling has 
its drawbacks because it is connected with both sam-
pling and non-sampling errors. The impacts of these 
errors are important because they can significantly 
determine the illustration of a population that is in-
tended to be recreated by means of estimation. The 
recreation is obtained by expanding the sampling in-
formation through weights. Because poststratification 
takes into account only the number of farms, calibrat-
ing weights by using auxiliary variables is a potential 
option to improve the accuracy of an estimator. 

Poststratified weights are currently used for the 
BAR to adjust the estimation weights. However, un-
der certain circumstances, such as correlation between 
target variables and response mechanism, the adjust-
ing power of this approach is limited. The quality of 
weights can be further improved by including addi-
tional (auxiliary) variables. This paper shows that the 
one-step calibration approach is a useful method to 
further improve the current estimation method by 
reducing the systematic error.  

Through the calibration approach, we have 

shown that the response mechanism could be disre-
garded by determining first the relationship between 
target and auxiliary variables. According to the deter-
mined relationship, the calibration function is chosen 
such that, independently of the response mechanism, a 
reduction in bias is assured. 

Moreover, the IACS dataset proved to be a relia-
ble source of robust and consistent auxiliary infor-
mation that served to obtain a reduction in bias and to 
assure a consistent estimation. Obviously, when esti-
mating a myriad of variables, the extent to which the 
calibration approach proves to have a positive effect 
on bias depends on the correlation between the varia-
bles of interest and the auxiliary variables used for  
the benchmark. For important variables, however, 
empirical results showed that calibration could reduce 
bias. 

Consequently, it can be concluded that even ob-
viating the modelling of the nonresponse mechanism, 
the estimates calculated using weights adjusted 
through the calibration approach perform better than 
poststratification estimates. Therefore, in the presence 
of ‘good’ auxiliary information, the calibration ap-
proach could provide accurate and efficient estimates 
that can serve as robust policy instruments. 

Figure 6.  Difference between poststratification 
and calibration estimates at population 
and regional level  

 
Source: own calculations 

Figure 7.  Difference between poststratification 
and calibration estimates at farm type 
level  

 
Source: own calculations 
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