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Abstract 
Many empirical studies have found Cumulative Pro-
spect Theory (CPT) superior in depicting risk behav-
ior compared to the expected utility approach and 
literature now offers also CPT related parameter es-
timates for European farmers. CPT combines two 
segments of utility functions, a convex, risk loving one 
for losses and a concave, risk averse one for gains, 
and assigns subjective weights to the pay-offs accord-
ing to their cumulative probabilities. So far, no im-
plementation of CPT into constrained optimization 
problems exists, allowing for instance, the simulation 
of risk management under CPT in farm-scale pro-
gramming models. To close this gap, we propose to 
combine endogenous sorting of the pay-offs based on 
integer variables with a piece-wise linear approxima-
tion of the value function using SOS2 (Special Or-
dered Sets of Type 2) variables. The SOS2 variables 
are required to deal with the convexity of the loss 
segment of the utility function. The integer sorting 
assigns the weights to the pay-offs according to their 
cumulative probabilities, it requires that all pay-offs 
are equally likely. Simulating optimal uptake levels of 
variants of a hypothetical crop insurance product with 
an evolved bio-economic model at farm-scale serves a 
proof of concept. The model considers adjustments in 
the cropping plan and allows for partial insurance 
coverage, in opposite to existing studies which evalu-
ate the uptake of crop insurance at fixed crop choices 
and depict coverage as a yes-no decision. 

The approximation error of the approach is 
found as negligible small and the numerical burden 
compared to optimization under risk neutrality as still 
acceptable. The proposed approximation approach is 
quite general and applicable for any utility function 
increasing in the pay-off value and does not require 
its differentiability. It can also be applied without 
probability weighting. The empirical application un-
derlines that the approach generates the expected 
behavior when a risk reducing strategy, here crop 
insurance, is considered under CPT. Insured acreage 

generally increases with higher strike levels where 
more frequently occurring but lower crop damages 
are covered, and with reduced cost of the insurance 
products. Using crop insurance as a risk management 
strategy is found to interact with other measures such 
as adjustments in cropping shares. This underlines the 
usefulness of an approach which allows to optimize 
interacting risk management strategies at farm-scale 
under CPT, considering resource and other relevant 
constraints. 

Keywords 
Cumulative Prospect Theory; constrained optimiza-
tion; Mixed Integer Programming; bio-economic 
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1 Introduction 

Cumulative Prospect Theory (CPT, TVERSKY and 
KAHNEMANN, 1992, in the following abbreviated as 
TK) is more flexible in depicting risk utility compared 
to expected utility theory and was found to describe 
more accurately risk behavior in many empirical stud-
ies (cf. WAKKER, 2010). The risk utility function in 
Prospect Theory is convex for losses and concave for 
gains around a given reference point. This implies risk 
loving for losses and risk aversion for gains, in con-
trast to the standard assumption of expected utility 
(EU) theory where the risk utility function is concave 
over the range of considered pay-offs. CPT adds cu-
mulative probability weighting such that the more 
extreme gains or losses receive higher weights com-
pared to their objective probability. This effect gets 
stronger the lower the attached objective probabilities 
to such outcomes. 

There is a growing body of literature which esti-
mates parameters related to CPT, also for European 
farmers (BOUGHERARA et al., 2017; BOCQUÉHO et al., 
2014; COELHO et al., 2012). Existing literature evalu-
ates risk management options under CPT keeping the 
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farm program fixed as no consistent incorporation of 
CPT into constrained optimization approaches is 
available. Instead, agricultural programming models 
consider risk behavior mostly by maximizing a 
weighted sum of the expected returns and their vari-
ance (E-V, also called Mean-Variance, M-V). The use 
of a linear approximation of E-V called MOTAD 
(Minimization of Total Absolute Deviations, HAZELL, 
1971) in models based on Mixed Integer Program-
ming (MIP) is also common. The E-V approach is 
consistent only under normally distributed pay-offs or 
under a quadratic utility function. Curvature require-
ments in constrained optimization exclude the consid-
eration of risk loving under E-V. Moreover, a concave 
quadratic utility function implies increasing relative 
and absolute risk aversion in wealth, which is unwel-
come in empirical applications. 

Against this background, an implementation of 
CPT into programming models is desirable, but also 
challenging. First, both the risk utility function and the 
weighting function for the probabilities are neither 
linear nor quadratic. This excludes their direct use in 
models which are based on MIP or mixed integer 
quadratically constrained programming, the most 
widespread solutions to capture indivisibilities, re-
turns-to-scale or other convex relations as well as if-
conditions in constrained economic maximization. 
Second, the non-concavity of the utility function on 
the loss segment excludes the use of a large set of 
widely used, gradient based solvers for non-linear 
programming. Third, the probability weighting re-
quires an ordering of the pay-offs which are endoge-
nous variables (cf. HENS and MEYER, 2014), which is 
possible only based on integer variables. It, therefore, 
comes at little surprise that the body of literature to 
optimize risk management under CPT is limited. 

The empirical example is taken from agricultural 
economics where the use of so-called bio-economic 
models is quite common (BRITZ et al., 2012; JANSSEN 
and VAN ITTERSUM, 2007). These models are often 
based on MIP, as it the case of the FarmDyn model 
(LENGERS et al., 2013) employed in the empirical 
application. It is used here to simulate the crop specif-
ic coverage level of different variants of a hypothet-
ical crop insurance product based on realized regional 
yields, considering simultaneously adjustments in the 
crop mix. Analyzing crop insurance is motivated by a 
lively discussion around insuring weather risks in 
agriculture (cf. ODENING and SHEN, 2014). This paper 
is organized as follows. After reviewing existing liter-
ature, the implementation is detailed, followed by a 

section on the empirical application. Their combina-
tion then feeds in the discussion section and a brief 
summary. 

2 Literature Review 

Many studies have found farmers to be risk averse 
(IYER et al., 2020) which motivates optimizing ex-
pected risk utility in farm-scale programming models 
(cf. JANSSEN and VAN ITTERSUM, 2007). But newer 
studies suggest that farmers rather decide according to 
CPT (BOUGHERARA et al., 2017, BOCQUÉHO et al., 
2014, COELHO et al., 2012), which can imply risk 
aversion or risk loving, depending on whether pay-
offs refer to gains or losses around a reference point. 
No consistent implementation of CPT in a constrained 
optimization set-up exists which motivates this paper. 

Besides market and policy risks faced by firms in 
all sectors, agriculture is also subject to considerable 
production risk due to weather, pests and diseases. 
While market-based instruments against price risk are 
existent and frequently used by farmers, insurance 
against weather risks are hardly taken up if not subsi-
dized (ODENING and SHEN, 2014). This explains why 
subsidized crop insurance exists in many countries, 
such as for decades in the US. Member States of the 
European Union can choose it as a measure under the 
Common Agricultural Policy, an option chosen, for 
instance, in Spain. Therefore, assessing the uptake of 
crop insurance provides an inviting case for our em-
pirical application as it asks for considering risk and 
risk behavior. 

In Germany, non-subsidized hail insurance is 
widespread. It is based on on-site assessment of the 
damage which comes along with considerable transac-
tion costs. Its frequent update by farmers despite these 
higher transaction costs might reflect the combination 
of a low probability and high damages of the hail risk, 
a combination receiving a high weight under CPT. 
Hail damage might in future be assessed based on 
satellite images (BELL and MOLTHAN, 2016) which 
reduces transaction cost. The extension of crop insur-
ance to weather events with more moderate damages, 
such as period of droughts, is challenging. If they 
require on-site inspection, the transaction costs to 
inspect the damage are high compared to paid-out 
indemnities. Furthermore, determining the actual 
damage caused by such weather events asks for an 
estimate of the site-specific yield which would have 
occurred without the insured event. This requires con-
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sidering the realization of all other stochastic sources 
of crop damages, such as pests or other climatic varia-
bles. Therefore, so-called index-based crop insurances 
are developed (cf. DALHAUS et al., 2020). They pay 
out indemnities solely based on the occurrence of an 
insured weather event, which excludes moral hazard. 
The latter challenges insurance coverage of realized 
site-specific yields which depend also on hard to mon-
itor farm management decisions. But index-based 
crop insurance can come along with considerable ba-
sis risk due to often moderate correlation, only, be-
tween the insured weather events and overall crop 
yield variability (e.g. WEBBER et al., 2018). 

An alternative to index-based products is the use 
of realized regional yields which is common in the 
US. This clearly also implies basis risk (FINGER, 
2012). BABCOCK (2015) determines at given cropping 
program optimal uptakes rates of a subsidized crop 
insurance under CPT considering different strike lev-
els, i.e. the minimal yield loss covered by the insur-
ance. The insured loss is determined by deviations of 
regional yields from trends, as in the hypothetical 
example analyzed here. DALHAUS et al. (2020) design 
weather index-based insurance contracts for winter 
wheat producers in Eastern Germany considering CPT 
and EU under different risk-behavioral parameters 
taken from literature. They evaluate different contract 
variants which differ in strike levels and whether pre-
miums are paid only in years with no losses. They 
find that contract variants leading to the highest up-
take rates can differ depending on whether EU or CPT 
is assumed, and develop a contract design which ben-
efits both EU and CPT maximizers. As in BABCOCK 
(2015), the farm program is taken as given. The ap-
proach chosen here allows instead both for an endog-
enous choice of the insured crops and their insured 
area shares, and considers simultaneously adjustments 
in the farm program. This requires an optimization 
approach. CAO et al. (2020) apply the logic of a CPT 
framework where gains and losses are treated differ-
ently in econometric work to explain why beef farm-
ers exit or stay in subsidized margin insurance in Can-
ada. Due to specific program design, farmers might 
(also falsely) expect gains such that certain participa-
tion decisions can be rather seen an investment  
strategy. 

Existing approaches which do not evaluate a yes-
no decision under CPT, but instead optimize a risk 
management strategy stem mostly from finance. In 
order to optimize a portfolio under CPT, HENS and 
MAYER (2014) propose to first define the efficient  

M-V frontier of the prospects to consider. This fron-
tier depicts for the different given mean returns, as 
found in the considered prospects, the prospect with 
the lowest possible variance in returns. Only consider-
ing prospects on the frontier considerably reduces the 
prospects to consider in further analysis. In their pa-
per, these prospects are assets in a classical portfolio 
selection problem defined by their pay-offs in distinct 
futures. Accordingly, the sole variable of choice to 
optimize are the shares of these assets, and no further 
constraints are considered. Their approach requires to 
generate first a large set of M-V optimal solutions 
which reflect different compositions of the portfolio. 
Afterwards, the risk utility function is evaluated for 
each considered composition and future, the resulting 
pay-offs are ordered to determine their cumulative 
probabilities and to calculate the attached subjective 
weights. This allows to quantify the utility attached to 
each considered portfolio choice. Afterwards, the best 
of the portfolios is selected. This iterative approach is 
clearly not easily applicable to constrained optimiza-
tion where portfolio choice is computationally much 
more demanding. The work of HENS and MEYER 
(2014) builds on LEVY and LEVY (2004) which com-
pare CPT to M-V analysis. They show that CPT effi-
cient portfolios composed of shares of risky assets 
almost coincide with the optimal ones under M-V if 
each asset has normally distributed pay-offs, shares of 
the assets can be freely chosen and the assets are not 
perfectly correlated. They prove formally that the CPT 
efficient frontier is a sub-set of the MV-efficient one 
under these conditions. 

CONSIGLI et al. (2019) solve the same problem as 
the two paper above by optimizing shares of assets in 
a portfolio for which the distribution of the returns for 
each asset is given. As HENS and MEYER (2014), they 
first generate random samples of such portfolios 
where each sample comprises different weights of the 
assets, and then select the best ones in an uncon-
strained optimization problem under CPT. They pro-
pose to use cubic splines to solve the problem of find-
ing the best solution, given the non-differentiability 
and non-concavity of the function to optimize. 

The approaches from finance to find CPT optimal 
portfolios are not applicable to farm-scale optimiza-
tion even if the decision variables are crop shares, 
only, if besides adding up of the crop acreages to total 
land also other constraints are considered. These re-
late, for instance, to other limiting resources such as 
labor or machinery, to crop rotational limits or to legal 
restrictions. This motivates the search for an approach 
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to implement CPT into constrained optimization prob-
lems. 

COEHLO et al. (2012) provide the only paper 
found which applies CPT in a constrained optimi- 
zation set-up where other constraints beside adding  
up of shares are considered. As in the empirical part 
of this paper, CPT is discussed in the context of farm-
scale optimization. Their CPT implementation seems 
however not consistent in two aspects. First, the 
weighting of each future requires the cumulative 
probabilities according to the order of the pay-offs, 
which can change during optimization. This does  
not fit to their use of fixed weighting coefficients for 
each future. Second, they use fixed certainty equiva-
lents per unit of net revenue in the different futures. 
This seems inconsistent as certainty equivalents be-
fore weighting depend under CPT on the non-linear 
risk utility function. Against this background, the ap-
proach proposed here seems the first consistent im-
plementation of CPT into a constrained optimization 
set-up. 

3 Methodology 

The approach combines three elements. The first is 
the estimation of a piece-wise linear approximation of 
the risk utility function. Second, this step-wise ap-
proximation is integrated into the constrained optimi-
zation problem based on a set of distinct futures. 
Third, the pay-offs are endogenously sorted in the 
model to assign them weights based on their cumula-
tive probabilities. How these elements are combined is 

discussed then in a follow-up section on the solution 
strategy. 

3.1 Piece-Wise Approximation of the  
Utility Function 

The approach uses the TK type of utility function 
which combines segments of two power utility func-
tions which relate to gains, first line in Equation (1), 
and losses (second line). Utility is defined based on a 
variable 𝑥𝑥. It depicts the pay-off to evaluate minus the 
pay-off at a reference point rp such that positive 𝑥𝑥 
depict gains and negative 𝑥𝑥 losses: 

𝑢𝑢(𝑥𝑥) = { 𝑥𝑥𝛼𝛼  𝑥𝑥 ≥ 0
−𝛾𝛾(−𝑥𝑥)𝛽𝛽 𝑥𝑥 ≤ 0 (1) 

The function can accommodate different exponents 𝛼𝛼 
for gains and 𝛽𝛽 for losses, typically restricted to the 
range between 0 and 1. It turns the exponential curve 
for losses relative to the one for gains based on the 
positive parameter 𝛾𝛾 (see also Figure 1). This parame-
ter 𝛾𝛾 was typically found to be larger than unity in 
empirical studies such that losses receive a higher 
weight than gains of the same absolute size, even if  
𝛼𝛼 is equal to 𝛽𝛽. Due to 𝛽𝛽 < 1 and the negative sign 
before 𝛾𝛾, the loss segment is convex which implies 
risk loving. The segment for gains is concave, imply-
ing risk aversion, as typically assumed under EU both 
for gains and losses. 

In order to define a piece-wise approximation of 
the TK risk utility function, the range of pay-offs to 
consider is needed. To do so, let 𝑠𝑠 define the observed 
or estimated spread of the pay-offs. Here, n-2 equally 

Figure 1.  TK risk utility function as used in the empirical analysis 

 
Source: Authors 
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distanced ordered outcomes of x on the range 
[−𝑠𝑠 2⁄ + 𝑟𝑟𝑟𝑟, + 𝑠𝑠 2⁄ + 𝑟𝑟𝑟𝑟] are used. Their spread is 
proposed to be the larger of 2 𝑟𝑟𝑟𝑟 or the difference 
between the minimum and maximum of the empirical-
ly observed pay-offs. As the pay-offs under CPT are 
endogenous and known after optimization, only, the 
spread of the optimized risk-neutral pay-offs 𝑥𝑥𝑓𝑓∗ is 
used instead here, their mean defines the reference 
point rp. This follows the argumentation of KŐSZEGI 
and RABIN (2007). 

In order to allow for potential changes in the min-
imum and maximum pay-offs when later maximizing 
risk-utility, two points at −𝑠𝑠 + 𝑟𝑟𝑟𝑟 and +𝑠𝑠 + 𝑟𝑟𝑟𝑟 are 
added. This results in n ordered pay-offs for which the 
risk utility function 𝑢𝑢(𝑥𝑥) is evaluated. The example 
application uses the original parameters of TK 1992, 
i.e. 𝛼𝛼 = 𝛽𝛽 = 0,88 and 𝛾𝛾 = 2,22 which results in the 
curve shown below in Figure 1. The graphic also de-
picts the considered spread of the pay-offs in €. As 
seen, the two segments are only moderately bended 
for larger gains or losses as the exponents of the pow-
er utility functions are close to unity. What is more 
apparent is the different slope of the loss segment due 
to a larger 𝛾𝛾. 

The first derivatives 𝑓𝑓𝑓𝑓 of this risk utility func-
tion are approximated at each endogenously optimized 
approximation point 𝑥𝑥𝑖𝑖 based on: 

𝑓𝑓𝑓𝑓𝑖𝑖 =
𝑢𝑢(𝑥𝑥𝑖𝑖) − 𝑢𝑢(𝑥𝑥𝑖𝑖−1)

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1
 (2) 

The number of approximation points n which are later 
introduced in the simulation framework is exogenous-
ly given, and in here chosen as 50. In order to find 

optimal values of these approximation points, a larger 
number of given payouts 𝑥𝑥𝑓𝑓∗���, here for 200 potential 
futures f, is defined. They are equidistantly distributed 
over the spread of the pay-offs. An equation defines 
for each i of the n ordered approximation points 𝑥𝑥𝑖𝑖 the 
minimum of the given payout 𝑥𝑥𝑓𝑓∗��� and the endogenous 
approximation points 𝑥𝑥𝑖𝑖. These minima are termed 
𝑥𝑥𝑥𝑥𝑖𝑖,𝑓𝑓1. They determine which linear segment on the 
approximation is used to evaluate the pay-off in future 
f: 

𝑥𝑥𝑥𝑥𝑖𝑖,𝑓𝑓 = min�𝑥𝑥𝑓𝑓∗��� − 𝑟𝑟𝑟𝑟���, 𝑥𝑥𝑖𝑖� (3) 

From there, the first differences between these ordered 
pay-off segments 𝑥𝑥𝑥𝑥𝑖𝑖,𝑓𝑓 are defined: 

∆𝑥𝑥𝑥𝑥𝑖𝑖𝑓𝑓 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑓𝑓 − 𝑥𝑥𝑥𝑥𝑖𝑖−1𝑓𝑓 (4) 

This allows to define the approximated utility 𝑢𝑢𝑓𝑓∗ for 
each future pay-off, by summing up over the first 
differences in the pay-offs over all segments i, 
weighted with the approximated first derivatives on 
each segment 𝑓𝑓𝑓𝑓𝑖𝑖: 

𝑢𝑢𝑓𝑓∗ = �∆𝑥𝑥𝑥𝑥𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖
𝑖𝑖

 (5) 

This approximation does not involve any discernable 
error as seem from Figure 2 above. The two extreme 
points −𝑠𝑠 + 𝑟𝑟𝑟𝑟 and +𝑠𝑠 + 𝑟𝑟𝑟𝑟 are clearly visible as 
                                                           
1 Symbols with a bar such as 𝑟𝑟� denote constants during an 

optimization approach, either the minimization of the 
approximation errors or later the optimization of the 
CPT objective in the MIP model. 

Figure 2.  Piece-wise linear approximation of the TK utility function 

 
Source: Authors 
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they fall outside the otherwise equidistant pay-off 
points. 

The choice of the starting points of the segments 
𝑥𝑥𝑖𝑖 and the resulting first differences between neigh-
boring ones are optimized based on a NLP program. It 
minimizes the difference between 𝑢𝑢𝑓𝑓∗ and the true 
value of the risk utility function at 𝑥𝑥𝑓𝑓∗���. Points close to 
the reference points receive a higher weight to consid-
er the larger derivatives of the utility function around 
this point. Based on its solution, the true value of the 
utility 𝑢𝑢𝚤𝚤�  function at each 𝑥𝑥𝑖𝑖 are stored. The resulting 
tuples (𝑢𝑢𝚤𝚤� , 𝑥𝑥𝚤𝚤� ) are entering as fixed and given the risk 
utility optimization as discussed next. The use of a 
NLP optimization which endogenously determines the 
approximation segments allows for a more accurate 
approximation in ranges of the function which larger 
derivatives. 

3.2 Integration of the Piece-Wise Approxi-
mation in the Simulation Model 

The integration of the piece-wise approximation is 
based on a set of equations drawing on so-called 
SOS2 (Special Ordered Sets of Type 2, GAMS, 2022: 
605) variables 𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑓𝑓. SOS2 variables are defined over 
an ordered set and can take on at most two values 
which must be consecutive. SOS2 variables are sup-
ported by most industry MIP solvers and the usual 
approach to a piece-wise linear interpolation of a con-
vex function when maximizing. The SOS2 variables 
ensure that the interpolation occurs only between two 
neighboring approximation points. Specifically, they 
represent here weights which define the linear interpo-
lation on the endogenously chosen segment between 
two neighboring approximation points [𝑥𝑥𝚥𝚥� , 𝑥𝑥𝚥𝚥−1������] 
which encloses the endogenously simulated pay-off 
𝑥𝑥𝑓𝑓∗ in a future. Accordingly, the two selected non-zero 
weights 𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖−1,𝑓𝑓 and 𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖,𝑓𝑓 which refer to the start-
ing and end point of the selected segment i for future f 
must add up to unity according to (6): 

�𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑓𝑓
𝑖𝑖

= 1 (6) 

The following Equation (7) defines the gain or loss 
based on the endogenously optimized pay-off 𝑥𝑥𝑓𝑓∗ mi-
nus the reference point rp in each future f, shown on 
the right-hand side, as a linear combination of these 
endogenous weights 𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑓𝑓 on the left-hand side. In 
this equation, weights are zero for all approximation 
points besides the ones relating to the enclosing seg-

ment according to the definition of the SOS2 varia-
bles: 

�𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑓𝑓𝑥𝑥𝚤𝚤�
𝑖𝑖

= 𝑥𝑥𝑓𝑓∗ − 𝑟𝑟𝑟𝑟��� (7) 

The approximated utility 𝑢𝑢𝑓𝑓∗ for each optimized pay-
off in any future 𝑥𝑥𝑓𝑓∗ is then defined in Equation (8) as 
an interpolation, using the same weights on the linear 
line between the utility function values [𝑢𝑢(𝑥𝑥𝚥𝚥)����, 
𝑢𝑢(𝑥𝑥𝚥𝚥−1������)] on the chosen segment: 

𝑢𝑢𝑓𝑓∗ = �𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑓𝑓𝑢𝑢𝚤𝚤�
𝑖𝑖

 (8) 

3.3 Endogenous Sporting of Outcomes to 
Consider the Weighting Function 

The TK type of weighting function is used for the  
cumulative probabilities 𝑐𝑐𝑟𝑟𝑓𝑓 as shown in Equation (9): 

𝑤𝑤𝑓𝑓 =  
𝑐𝑐𝑟𝑟𝑓𝑓𝛿𝛿

�𝑐𝑐𝑟𝑟𝑓𝑓𝛿𝛿 + �1 − 𝑐𝑐𝑟𝑟𝑓𝑓𝛿𝛿��
1/𝛿𝛿 (9) 

These cumulative probabilities are defined from the 
probabilities p of the pay-offs 𝑥𝑥𝑓𝑓∗ as follows for losses 
𝑐𝑐𝑟𝑟𝑓𝑓− and gains 𝑐𝑐𝑟𝑟𝑓𝑓+ according to Equation (10): 

𝑐𝑐𝑟𝑟𝑓𝑓− = � 𝑟𝑟𝑔𝑔 
𝑔𝑔 ∀  𝑥𝑥𝑔𝑔∗≤𝑥𝑥𝑓𝑓

∗

 

𝑐𝑐𝑟𝑟𝑓𝑓+ = � 𝑟𝑟𝑔𝑔 
𝑔𝑔 ∀  𝑥𝑥𝑔𝑔∗≥𝑥𝑥𝑓𝑓

∗

 

(10) 

Some authors propose different 𝛿𝛿 in Equation (9) for 
cumulative probabilities depending on whether they 
represent gains or losses. This approach can be easily 
incorporated as the calculation of the weights attached 
to a cumulative probability, but not a specific future, 
occurs outside of the optimization model. 

The weights for the cumulative probabilities are 
translated into subjective probabilities sp for each 
ordered future according to Equation (11): 

𝑠𝑠𝑟𝑟𝑓𝑓 =  
𝑤𝑤𝑓𝑓−𝑤𝑤𝑓𝑓−1
𝑐𝑐𝑟𝑟𝑓𝑓−𝑐𝑐𝑟𝑟𝑓𝑓−1

𝑟𝑟𝑓𝑓  (11) 

Where the index f-1 relates to the future with the next 
lower (losses) respectively higher (gains) cumulative 
probability. Equation (11) uses the differences in the 
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subjective cumulative weightings 𝑤𝑤𝑓𝑓 relative to the 
differences in the cumulate objective probabilities 
𝑐𝑐𝑟𝑟𝑓𝑓 to define subjective probabilities 𝑠𝑠𝑟𝑟𝑓𝑓 for each 
future. In order to improve the interpretation of the 
outcomes, the sum of the subjective 𝑠𝑠𝑟𝑟𝑓𝑓 is scaled to 
unity. 

Figure 3 shows the outcome of the weighting 
function, with the cumulative probabilities and the 
weights on the left axis and the differences in the 
weights on the right one, for 20 futures as used  
in the empirical example. The futures are defined such 
as to have identical objective probabilities of 5%. As 
seen from Figure 3, both higher losses on the left, 
referring to cumulative probabilities close to zero, and 
higher gains on the right, referring to cumulative 
probabilities close to unity, receive above average 
weights. These differences in weights, shown in red, 
are symmetric and depict the subjective probabilities 
used. 

As the probabilities of the outcomes are all equal-
ly likely, any order of the pay-offs will generate the 
same shape of the cumulative probabilities as in 
shown in Figure 3, resulting in one unique fixed vec-
tor of weights. As the pay-offs for the futures and thus 
their ordering are unknown before optimization, the 
weights attached to them are also unknown before-
hand. In order to attach the proper weight to a future, 
the position of its endogenously optimized pay-off in 
the ordered list of all optimized pay-offs must be 
known. This position determines the future’s cumula-
tive probability and its endogenous weight. 

The standard approach to endogenous sorting in MIP 
is applied, based on an endogenous permutation matrix 
pm of integer variables. It maps the vector of unsorted 
utility values to sorted ones. This matrix carries a 1 
when the unsorted utility in future f is assigned to posi-
tion i in the list of sorted utility values, and zero oth-
erwise. Note that the order of the pay-offs and of the 
utility values are identical, as the risk utility is increas-
ing in the pay-off. Sorting the pay-offs hence also sorts 
the utility values of the futures. From an implementa-
tion perspective, sorting the utility values is preferred 
as this leads to the function value to optimize. 

To ensure a unique mapping, the following two 
conditions are needed: 

1 = �𝑟𝑟𝑝𝑝𝑓𝑓,𝑖𝑖  
𝑓𝑓

 (12) 

1 = �𝑟𝑟𝑝𝑝𝑓𝑓,𝑖𝑖  
𝑖𝑖

 (13) 

The approximated utility values to sort are endoge-
nous variables. To avoid a quadratic problem where 
products of integer variables with continuous ones 
occur, the following two inequality constraints using 
so-called BIGM parameters are used. They ensure that 
empty positions in the permutation matrix 𝑟𝑟𝑝𝑝   lead to 
empty positions in the matrix of endogenous permuta-
tion values 𝑣𝑣𝑝𝑝  : 

𝑣𝑣𝑝𝑝𝑓𝑓,𝑖𝑖 ≤  𝑟𝑟𝑝𝑝𝑓𝑓,𝑖𝑖   𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵+ (14) 

Figure 3.  TK weighting function for 20 equally likely futures 

 
Source: Authors 
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𝑣𝑣𝑝𝑝𝑓𝑓,𝑖𝑖 ≥  𝑟𝑟𝑝𝑝𝑓𝑓,𝑖𝑖   𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵− (15) 

Where 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵+ is the utility attached to the maximum 
utility considered in the approximation and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−  
the minimal one. 

The following two related constraints ensure that 
the value in the matrix vm is equal to the approximat-
ed utility where the permutation matrix pm shows the 
indicator value 1, and zero otherwise: 

𝑢𝑢𝑓𝑓∗ ≤  𝑣𝑣𝑝𝑝𝑓𝑓,𝑖𝑖   + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵+ �1− 𝑟𝑟𝑝𝑝𝑓𝑓,𝑖𝑖  � (16) 

𝑢𝑢𝑓𝑓∗ ≥  𝑣𝑣𝑝𝑝𝑓𝑓,𝑖𝑖   + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵− �1− 𝑟𝑟𝑝𝑝𝑓𝑓,𝑖𝑖  � (17) 

The sorted outcome 𝑢𝑢𝑠𝑠𝑖𝑖∗ of 𝑢𝑢𝑓𝑓∗ are than defined as: 

𝑢𝑢𝑠𝑠𝑖𝑖∗ = �𝑣𝑣𝑝𝑝𝑓𝑓,𝑖𝑖  
𝑓𝑓

 (18) 

The objective function maximizes the weighted sum 
of the sorted approximated risk utility 𝑢𝑢𝑠𝑠𝑖𝑖∗: 

𝑢𝑢 = �𝑠𝑠𝑟𝑟���𝑖𝑖
𝑖𝑖

𝑢𝑢𝑠𝑠𝑖𝑖∗ (19) 

3.4 Solution Strategy 
In order to find the approximation, the model is first 
optimized under risk neutrality (step 1 in Figure 4), 
without the additional variables and equations re-
quired for CPT. The resulting optimal risk neutral 
pay-offs define the reference point and the considered 
spread of the pay-offs (step 2), both needed to find 
approximation points for the utility function (step 3). 

For each optimal pay-off in each future under 
risk neutrality, the enclosing segment on the approxi-
mation function is next searched, and weights 
𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖−1,𝑓𝑓 and 𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖,𝑓𝑓 calculated with recover exactly 
this pay-off. From there, the attached approximated 
utility outcomes 𝑢𝑢𝑓𝑓∗ are calculated (step 4). These out-
comes are subsequently sorted to determine starting 
values for 𝑣𝑣𝑝𝑝𝑓𝑓,𝑖𝑖  and 𝑟𝑟𝑝𝑝𝑓𝑓,𝑖𝑖  (step 5). This allows to 
calculate also starting values for the sorted outcomes 
𝑢𝑢𝑠𝑠𝑖𝑖∗ and the objective variable 𝑢𝑢. Jointly, this defines 
an integer feasible (but most probably not yet optimal) 
solution to the CPT problem, at the previously simu-
lated optimal solution under risk neutrality.  

The data on regional yields and assumptions on 
the strike level and transaction costs allow to define 
the crop specific premiums and indemnities (step 6). 
These are attached to variables which allow to insure 
each crop up to its endogenously determined acreage. 
These variables are added to the optimization problem. 

Figure 4. Overview on modelling process 

 
Source: Authors 
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From the integer optimal starting point under risk 
neutrality, a new optimum under CPT is searched for 
(step 7), considering the new options to insure, but 
with a still fixed permutation matrix 𝑟𝑟𝑝𝑝. Optimizing 
this problem from the given integer feasible point 
solves typically in a few seconds. Besides opting  
into insurance, also the farm program might change. 
The resulting solution is probably inconsistent as  
the optimal pay-offs are not yet endogenously  
sorted; their order is unchanged from the risk neutral 
solution. Accordingly, the updated outcomes 𝑢𝑢𝑓𝑓∗ are 
sorted again and new starting values derived for 
𝑣𝑣𝑝𝑝𝑓𝑓,𝑖𝑖  ,𝑟𝑟𝑝𝑝𝑓𝑓,𝑖𝑖  as well 𝑢𝑢𝑠𝑠𝑖𝑖∗ (step 8). This results in a 
second integer feasible starting point, with potentially 
updated weights for the futures. After releasing the 
bounds on 𝑟𝑟𝑝𝑝, the final full problem is solved where 
also the ordering and thus the weights attached to each 
future become endogenous (step 9). This solve is  
numerically far more demanding and can take several 
minutes2. 

4 An Empirical Example  
Application 

4.1 Simulation Model 
The bio-economic farm-scale model FarmDyn3 is  
employed in the empirical application, taking the up-
take of crop insurance as an example to evaluate the 
implementation of the approximated CPT approach. 
FarmDyn is quite evolved, considering, for instance, 
indivisibilities in investments into a larger set of dif-
ferent machines, bi-weekly farm labor constraints and 
details of the restrictions under the so-called “Green-

                                                           
2  As usual with MIP problems, the problem is not solved 

to full optimality. The relative optimality tolerance is set 
here to 0.2% and an absolute one of 10, the latter refers 
to farm household income in € for the risk neutral case 
and the risk utility level under CPT. Usually, the solver 
tends to find quite fast good integer optimal solutions 
under CPT, but requires many iterations to move the 
best bounds close enough to them. 

3  The FarmDyn documentation can be found at 
https://farmdyn.github.io/documentation/. FarmDyn is 
open source, available at https://svn1.agp.uni-bonn.de/ 
svn/dairydyn/trunk with userid farmdyn and password 
farmdyn. The code of the equations discussed above can 
be found in gams/model/stochprog_module.gms, the ap-
proximation of the utility function and solving the CPT 
version in gams/solve/run_cpt.gms and the calculation 
of the indemnities and premiums in gams/coeffgen/stoch 
Prog.gms. 

ing” of the Common Agricultural Policy (HEINRICHS 
et al., 2021a) or the German Fertilizer directive (KUHN 
et al., 2020). It is based on MIP, realized in GAMS 
(General Algebraic Modelling Language, GAMS, 
2022, an Algebraic Modeling Language widely used in 
agricultural economics, see BRITZ and KALLRATH, 
2012) and steered by a Graphical User Interface4 based 
on GGIG (BRITZ, 2014). Using a model with detailed 
decision variables and constraints allows to assess the 
numerical burden of the proposed CPT implementation 
in an empirically relevant environment. 

The parameterization of FarmDyn draws to a 
large extent on the highly detailed farm-management 
planning data offered by KTBL, a German parastatal, 
which consider, for instance, effects of plot-size and 
plot-farm distance on costs, machinery requirements 
and labor needs of individual farm operations (HEIN-
RICHS et al., 2020b). KTBL also reports matching time 
series of regional crop yields. FarmDyn is based on a 
modular concept (BRITZ et al., 2021); the implementa-
tion of the CPT approach is one example for such a 
modular extension. FarmDyn can depict different 
farm branches in detail. Here, solely the module for 
arable cropping is used, restricting the choice of tech-
nologies to plough based tillage under conventional 
farming. 

4.2 Case Study Farms and Stochastics 
An arable farm situated in the region around Cologne 
in Germany with 100 hectares serves as the study case 
for the empirical application. It can cultivate winter 
wheat, winter rape, summer barley or summer peas. It 
is assumed that harvesting is outsourced to a contrac-
tor, all other field operations are managed by the farm 
itself based on own machinery. Related investment 
costs are treated in the comparative-static set-up as if 
they were variable costs, no sunk costs are assumed. It 
is also assumed that the farm owns the land, which 
can be important when considering risk behavior due 
to wealth effects. 

The farm is subject to the Ecological Focus Area 
(EFA) requirements of the Common Agricultural Pol-
icy such that it has to dedicate 5% of its cropped land 
to specific types of land cover. The considered options 
comprise idling land, catch crops in combination with 
summer crops or cropping summer peas as a legumi-

                                                           
4  The user interface allows, for instance, to input the 

parameters for the TK utility function and the probabil-
ity weighting, the number of approximation points to 
consider and to select data with regional yields. 

https://farmdyn.github.io/documentation/
https://svn1.agp.uni-bonn.de/svn/dairydyn/trunk
https://svn1.agp.uni-bonn.de/svn/dairydyn/trunk
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nous crop, where catch crops only count with a factor 
of 0.3. Furthermore, the shares of the two most im-
portant crops cannot exceed 95% and the one of the 
most important crop not 75% of the acreage under the 
Common Agricultural Policy. The crop choice is fur-
ther restricted by crop and crop group specific maxi-
mum crop shares. In the comparative-static set-up, 
these maximum shares capture the effect of minimum 
waiting time requirements before a crop or group of 
crops can be cultivated on the same plot again. Crop 
yields, prices, costs, labor and machinery require-
ments are taken from the KTBL data base. The farmer 
can work up to 1,700 hours per year, and each month 
up to 1/4 above an equal distribution of the 1,700 
hours over the year. The model considers returns-to-
scale for labor needs related to managing the farm and 
the arable cropping branch. It is also possible to partly 
work off-farm. Accordingly, the objective relates to 
farm-household income. Due to this set-up, risk man-
agement strategies are considered even without crop 
insurance. Crop shares can be adjusted to benefit from 
not fully correlated crop yield variations, and labor 
can be shifted to off-farm use where risk-free returns 
in form of deterministic wages are assumed. 

Given the focus on crop yield insurance, crop 
yields are treated as stochastic, using observed yields 
for the Regierungsbezirk Köln for the years 2001-
2020 (see Figure 5). Yield levels and the size of the 
fluctuations underline that the region benefits from 
better soils and a climate quite suitable for arable 
cropping under rainfed conditions. Expected crop 
prices are set to the three-average 2018-2020. The 
yield series were detrended based on linear trends 

(dotted lines), trend estimates for the last observed 
year 2020 define the expected yields. The errors from 
the trend lines are added to the expected yields to 
define the yield risk faced by the farmer. The graphs 
already highlight that the downside risk differs across 
the crops, and no catastrophic events were observed. 
The minimum relative yield level for winter wheat, 
the dominant crop from an economic view point, is 
around 91%, opposed to around 75% for summer peas 
and 87% for winter rape and summer barley. 

As the insurance product is hypothetical, differ-
ent strike levels are considered in sensitivity analysis, 
between 75% and 100% in steps of 5%. BABCOCK 
(2015) also considers different strike levels, as famers 
can decide on them when opting into subsidized crop 
insurance in the US. Equally, besides a base cost of 10 
€ per ha, three levels of transaction costs on paid-out 
indemnities are considered, at 20%, 40% and 60%. 
This could be interpreted as analyzing potential levels 
of subsidization. The scenario which is discussed in 
some detail is based on a 100% strike level combined 
with 20% transaction costs; it represents the case 
where the highest share of the land is insured under 
the considered options. 

Different from DALHAUS et al. (2020), no yield 
time series for individual farms are available. Accord-
ingly, the basis risk cannot be quantified which likely 
implies an overestimation of the benefits from crop 
insurance. But the example still allows to evaluate the 
proposed implementation of CPT in an empirical set-
ting from a computational viewpoint as well as gener-
ating interesting insights from optimizing insured 
areas and crop shares simultaneously. 

Figure 5. Observed yields 2001-2020, in dt/ha 

 
Source: KTBL data base. Dotted lines show linear trends. 
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5 Results 
5.1 Risk Neutral Solution 
To gain insights in the optimization logic, results for 
the risk neutral case are discussed first. They define the 
reference point. The farmer devotes around 51 hec-
tares to winter wheat, 29 hectares to summer barley 
and 15 hectares to winter rape. A combination of  
3,3 ha idling land, 2,2 ha of summer peas and 1,4 ha 
of mustard as a cover crop fulfill the EFA restriction. 
About 800 hours are allocated to field operations and 
540 hours for general farm and crop branch manage-
ment. This allows the farming household to work 
around 340 hours per year off-farm at minimum wage, 
under an option where no social security or income 
tax paid. In July, August and September, the maximal 
allowed deviations (+25%) from the assumed mean 
distribution of the labor hours over the year become 
binding and no leisure time is possible. In these 
months, around 180 hours would be worked, in con-
trast to solely around 100 hours in January and De-
cember. The endogenous labor distribution also con-
siders to take holidays when working off-farm and to 
unevenly distribute the work hours needed for farm 
management, with a flexibility of 50%. 

 

The resulting expected farm-household income 
amounts to around 92.600 €, of which 30.000 € stem 
from first pillar payments and are risk-free. The same 
holds for around 3.000 € of wage income. Yearly fluc-
tuations due to production risk imply a range of the 
realized incomes between around 75.000 € and 
114.000 € (see also Table 1 below). The average ara-
ble crop farm in the federal state of NRW has a 
somewhat higher income of around 117.000 € at 97 ha 
in the reporting year 2020/2021 (BMEL, 2022), but as 
a statistical average shows some animal production 
and 10 ha of fodder production and uses considerably 
more labor. It also crops potatoes and sugar beet, not 
considered here due to the specific investment re-
quirements in machinery and buildings. Against this 
statistical average, the chosen farm size and the simu-
lated farm income seems reasonable. 

5.2 CPT 
The expected mean income from the risk-neutral case 
serves as the reference point for the follow-up CPT 
based optimization. Under CPT, futures with losses 
now receive higher weights, due to a larger negative 
slope for losses on the risk utility function and to sub-
jective probability weighting. 

Table 1.  Key simulation metric for the 20 futures 
 Objective 

Probality 
Subjective 
Probability 

Pay-off 
Neutral 

Risk Utility 
Neutral 

Pay-off 
CPT 

Risk Utility 
CPT 

Approx. 
Risk utility 

CPT 

Approx. 
Error  

absolute 

Approx. 
Error 

% 
2001 0,050 0,070 76.864 -10.935 81.144 -8.264 -8.259 -5,78 0,07 
2002 0,050 0,140 114.310 6.559 109.587 5.287 5.282 5,75 0,11 
2003 0,050 0,030 92.974 198 88.946 -3.007 -2.965 -41,96 1,40 
2004 0,050 0,040 83.826 -6.530 84.021 -6.402 -6.361 -40,88 0,64 
2005 0,050 0,040 104.417 3.845 99.476 2.392 2.371 20,83 0,87 
2006 0,050 0,030 93.160 275 88.934 -3.016 -2.974 -41,68 1,38 
2007 0,050 0,040 83.662 -6.638 85.162 -5.643 -5.599 -44,08 0,78 
2008 0,050 0,140 74.281 -12.503 81.144 -8.264 -8.259 -5,78 0,07 
2009 0,050 0,040 99.378 2.362 95.017 961 933 27,12 2,82 
2010 0,050 0,040 104.499 3.868 99.825 2.498 2.472 25,85 1,03 
2011 0,050 0,030 84.139 -6.324 85.772 -5.232 -5.192 -40,12 0,77 
2012 0,050 0,030 84.691 -5.958 85.708 -5.276 -5.235 -40,75 0,77 
2013 0,050 0,030 98.654 2.139 94.491 777 758 18,97 2,44 
2014 0,050 0,030 98.211 2.002 94.063 622 614 7,83 1,26 
2015 0,050 0,070 107.971 4.843 103.448 3.567 3.520 46,64 1,31 
2016 0,050 0,050 105.346 4.109 100.460 2.689 2.656 33,42 1,24 
2017 0,050 0,050 78.082 -10.185 81.989 -7.724 -7.717 -6,26 0,08 
2018 0,050 0,040 80.981 -8.368 84.381 -6.164 -6.120 -43,28 0,70 
2019 0,050 0,030 88.279 -3.489 85.360 -5.510 -5.467 -43,26 0,79 
2020 0,050 0,030 97.614 1.814 93.200 292 268 23,48 8,04 
Max     114.310 6.559 109.587 5.287 5.282 46,64 8,04 
Min     74.281 -12.503 81.144 -8.264 -8.259 -44,08 0,07 
Mean     92.567 -1.946 91.106 -2.271 -2.264 -7,20 1,33 

Note: Approx.: approximation based on linear interpolation 
Source: Model simulation results by authors  
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To explain choices on insured area and crop 
share adjustment, we discuss one case in some detail. 
It refers to a 100% strike level and 20% transaction 
costs where the maximal acreage is insured. The pre-
miums of the insurance amount to around 30-32 € ha-1,  
depending on the crop. This can be compared to the 
around 10 € ha-1 as the cost of hail insurance accord-
ing to the planning data used which are already con-
sidered in the risk neutral case. 84 ha are insured, 

comprising all the winter wheat and summer barley 
acreage, plus around 4 ha of rape equivalent to about 
30% of its area. Considering yearly premiums to pay 
and deducting the indemnities paid out, resulting ex-
pected yearly costs of the insurance amount to around 
1.450 € at farm level or around 15 € ha-1. 

Besides opting into insurance, the crop choice is 
adjusted under CPT as well: the winter wheat area is 
increased by one hectare and summer barley reduced 

Figure 6. Yearly fluctuation in revenues per ha, with and without insurance 

 

 

 

 
Source:  Authors’ calculations based on KTBL data, indemnities and insurance costs at 95% strike level and 20% transaction costs on 

indemnities paid plus 10 € per ha. 
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accordingly. Moreover, the 2,2 ha summer peas found 
under risk neutrality are dropped from the cropping 
program and the idling area is increased by 2 ha in-
stead to fulfill the EFA requirement.  

A look at the absolute fluctuations of revenues 
per hectare (Figure 6) for the insured and not-insured 
case helps to understand this choice. Wheat as the 
dominant crops which the largest contribution to farm 
revenues shows damages in many years (2001, 2004, 
2007, 2008, 2011, 2012, 2017, 2018)5. The deviations 
of the summer cereal as the second most important 
crop typically show below average yields in these 
years as well; they tend to be somewhat larger. 

In contrast, winter rape sometime shows positive 
fluctuations (e.g. 2011, 2012, 2018) or limited nega-
tive ones, only (2008), where damages in cereals oc-
cur, or larger damages where negative deviations in 
cereals are limited (e.g. 2001, 2019). Cropping rape 
together with cereals therefore dampens their joint 
production risk and reduces the incentive to insure the 
winter rape area if cereals are already insured. Ac-
cordingly, the farmer insures the two major crops 
fully and complements this choice by insuring part of 
the winter rape, only. 

Details on the pay-offs and related utility values 
can be found in Table 1. The total risk premium as the 
difference between the new optimal income of around 

                                                           
5  Observed realized yield fluctuations in ex-post years 

define here distinct futures or state-of-nature from the 
viewpoint of the optimizing agent. For simplicity, these 
futures are here named after the ex-post years. 

91.100 € and the risk neutral one of 92.600 € amounts 
to around 1.500 €. It is almost equal to the differences 
between the insurance premiums paid and the indem-
nities received as the impact of the adjustment of the 
crop choice on the expected pay-off is quite limited. 

In Table 1 above, the three years with the highest 
losses under CPT are shown in bold, they receive also 
larger subjective weights, as do the cases with the larg-
est gains. The largest indemnities are paid out in the 
three years with the extreme losses, in 2008 with 
around 10.900 €, a year with the same income as in 
2001, where around 9.000 € of indemnities are paid, 
and 2017 with 8.500 €. The table shows also that rela-
tive approximation errors are quite small. The largest 
on is found in the year 2020 with 8%. This case simu-
lates a pay-off very close to the reference point where 
the value on the utility function is close to zero such 
that even smaller absolute deviations lead to a large 
relative error. 

The differences in the ordered pay-offs are visu-
alized in Figure 7 above. As expected, the CPT solu-
tion turns the pay-off curve clockwise and reduces the 
risk in years with larger losses. This comes at the ex-
pense of lower payouts in 12 years, such that the ex-
pected pay-offs under CPT are higher in 8 out of 20 
years. Despite the focus of CPT on the extremes, 
where also larger gains carry high weights, the maxi-
mum income observed under risk neutrality is reduced 
by around 5.300 € when moving to CPT. Of this, 
around 2.600 € are premiums paid. The rest stems 
from adjustments in the farm program, especially 
from dropping 2,2 ha of summer peas and increasing 
the idling land instead. 

Figure 7.  Order pay-offs under risk-neutrality and CPT 

 
Source: Model simulation results by authors 
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5.3 Sensitivity Analysis 
In order to enrich the analysis and to test the approach 
further, results for the other considered parameter 
values of the crop insurance are discussed. Figure 8 
depicts two main results, the insured acreage and re-
sulting costs at farm level, i.e. premiums minus in-
demnities. It highlights that lower transaction costs at 
unchanged strike level let the insured area increase or 
at least keep it unchanged. Especially at high strike 
level, the insured acreage reacts quite sensitive to the 
cost of the insurance. At a 95% and 100% strike level, 
close to all cropped area is insured under low transac-
tion cost (20%) or no area at all under high transaction 
cost (60%). In parallel, the cost of insurance at farm 
level tend to increase or at least stay unchanged if 
transactions costs are reduced, such that the expansion 
effects in insured acreage dominates with regard to 
total costs. In opposite to a contract variant analyzed 
by DALHAUS et al. (2020), the farmer pays premiums 
in our set-up also in years where indemnities are paid 
out. Higher transaction costs hence decrease the impact 

 

of insurance on downside risk reduction, even if all 
insured crops would show damages in a year. 

As seen from the spread of the insured costs in 
Figure 8, these adjustments hardly matter from an 
economic perspective. On per hectare basis, insurance 
costs fluctuate between close to zero at the 80% strike 
level and a maximum of around 15 €, found under a 
100% strike level and 20% transaction costs. 

The choice of which crops to insure to which ex-
tent reacts quite sensitive to the offered insurance 
variant (see Table 2). Winter wheat with its minimum 
observed yield above 90% of its mean can be insured 
only at quite high strike levels of 95% or 100%. This 
option then implies also larger costs and is chosen 
solely at low transaction costs of 20%. This holds also 
for partial coverage of the winter rape area. In oppo-
site, summer barley areas are partly insured also at 
higher transaction cost levels. At low strike levels, 
summer peas are insured, only, and the related insur-
ance costs negligible at farm level due to the low in-
sured acreage overall. 

Figure 8.  Insured acreage and resulting insurance costs at farm scale 

 

 
Source: Model simulation results by authors 
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Crop acreages of the three major crops react mod-
erately to the offered insurance variant (see Table 3). 
The total amount of cereals is often bounded by a 
maximum of 80% of cereals allowed on total cropped 
land. After accounting for the EFA requirements, the 
remaining area is then used for winter rape. Summer 
barley shows acreages between 26 and 28 ha depend-
ing on the offered insurance variant, the spread for 
winter rape and winter wheat is smaller which around 
1 ha. More volatile are land uses linked to the EFA 
requirement, especially in relative terms. The idling 
land covers between 3,3 and 5 ha, it is either com-
bined with summer peas (between 0,3 and 1,7 ha) 
and/or with cover crops (between 0,9 and 1,6 ha). 

Besides overall land available, the legal obligation to 
fulfill the EFA requirement and the maximal cropping 
share of cereals, labor availability determines to a 
large extent the chosen cropping program. In summer 
and late autumn, the maximally assumed work load is 
reached. This explains why idling land is found as part 
of the crop choice. Cropping summer peas instead to 
fulfill EFA requirement would generate additional 
farm income, but would require additional labor in 
peak periods and thus reduces the amount of off-farm 
labor and related wage income in each and every 
month. Combined with some larger down-side risk, 
summer peas therefore react quite sensitive to changes 
in the offered insurance. 

Table 2.  Insured areas by crop (ha) under different strike levels and transaction costs 
 Transaction 

cost 
Strike level 

 75% 80% 85% 90% 95% 100% 

Winter wheat 
60%       
40%       
20%     51,7 51,8 

Summer barley 
60%    12,7   
40%    15,9 20,8 16,5 
20%    22,0 28,3 28,2 

Winter rape 
60%       
40%       
20%    7,0 2,7 4,2 

Summer peas 
60%       
40% 1,0 1,0     
20% 1,7 1,7     

Source: Model simulation results by authors 

Table 3.  Acreages (ha) under different strike levels and transaction costs 
 Transaction 

cost 
Strike level 

 75% 80% 85% 90% 95% 100% 
 60% 52,6 52,6 52,6 51,7 52,6 52,6 
Winter wheat 40% 52,0 52,0 52,6 50,9 52,1 52,6 
 20% 51,6 51,6 52,6 51,5 51,7 51,8 
 60% 25,9 25,9 25,9 28,1 25,9 25,9 
Summer barley 40% 26,5 26,5 25,9 29,1 27,2 25,9 
 20% 27,0 27,0 25,9 28,5 28,3 28,2 
 60% 16,5 16,5 16,5 15,6 16,5 16,5 
Winter rape 40% 16,5 16,5 16,5 15,4 15,9 16,5 
 20% 16,4 16,4 16,5 15,5 15,5 15,5 
 60% 0,0 0,0   0,3 0,0 0,0 
Summer peas 40% 1,0 1,0      
 20% 1,7 1,7         

Mustard as cover crop 
60%   0,0 0,0 1,4 0,0 0,0 
40%  0,0 0,0 1,5 0,9 0,0 
20%   0,0 0,0 1,6 1,6 1,6 

 60% 5,0 5,0 5,0 4,3 5,0 5,0 
Idling land 40% 4,0 4,0 5,0 2,9 4,7 5,0 
 20% 3,3 3,3 5,0 4,1 4,4 4,5 

Source: Model simulation results by authors 
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5.4 Some Technical Aspects 
The implementation of the approximated risk utility 
function requires additional equations and variables, 
including the SOS2 variables to select the relevant 
segments on the approximated utility function and the 
integer variables for sorting the outcomes. This pro-
vokes additional computational burden. Indeed, while 
the solution of the MIP model under risk-neutrality 
requires just 2 seconds6, the CPT case with the SOS27 
variables for each future drive up the solution time to 
around 10 seconds as long as permutation matrix is 
fixed. If the endogenous sorting is activated for the 
full solve, many integer variables are added and the 
solution increases to up to around five minutes. 

These run times reflect some specific choices to 
speed up solution. After solving the risk neutral case, 
bounds of 8.000 € around the risk-neutral pay-offs in 
each future and around the sorted outcomes were in-
troduced, from which also bounds on the related utili-
ty function values were derived. The size of bounds is 
chosen such they not become binding during optimi-
zation; they hence do not impact the optimal solution. 
Segments on the interpolation function for a future 
outside the related bounds were excluded from the 
solution, equally, the permutation matrix was fixed to 
zero for combinations excluded by these bounds. This 
reduces the solution space which matters especially 
for the integer variables. Without these bounds and 
fixed integers, the solve process with endogenous 
sorting was in some of the sensitivity experiments 
stopped by a maximal time limit of one hour, com-
pared to maximal five minutes with these bounds. 
Moreover, FarmDyn already comprise heuristics 
which remove endogenous variables not found in a 
relaxed integer solution, solved before the risk neutral 
case is optimized. This underlines that besides the 
implementation of the equations discussed above, 
further modifications to existing model code might be 
necessary to deal with the increased computational 
burden provoked by the CPT implementation. 

Due to the subtraction of the reference point and 
the power utility function, the CPT approach tends to 
generate objective values which are of at least a magni- 

                                                           
6  The tests were run on quite performant computer with a 

i9 processor with 8 cores and 32 GB of memory, using 
GAMS 39.2.1 and GUROBI as the MIP solver. 

7  After some experimenting with different solvers, solver 
options and further technical details of the code imple-
mentation, the SOS2 mechanism is implemented in the 
code based on SOS1 variables as this sped up the solu-
tion time. Details are not discussed further in here. 

tude lower than the average pay-offs under risk neu-
trality. This must be kept in mind when setting the 
relative or absolute optimality tolerance of the MIP 
solver different from zero. 

6 Discussion 

6.1 Methodological Viewpoints 
The empirical application underlines that the proposed 
approximation of the TK utility function works almost 
perfect and remaining errors are negligible from an 
empirical perspective. The approximation can be ap-
plied to any risk utility function, independent from 
prospect theory. If this risk utility function is concave, 
the SOS2 variables can be replaced by fractionals. 
The endogenous subjective probability weighting is 
necessary for a CPT implementation, only. In the pro-
posed form, it is applicable only if all considered fu-
tures are equally likely. In case where futures are con-
structed based on random draws from distributions, 
the scenario design must be adjusted accordingly. 

Analyzing the uptake rate of an additional risk-
management instrument, such as crop insurance in our 
empirical example, renders is impossible without ac-
tual optimization to determine the distribution of the 
pay-offs and their order ex-ante, even if the farm pro-
gram would be otherwise fixed. This is different in 
other literature where the decision is analyzed whether 
or not to insure all crop area at a given farm program. 
In this case, the risk utility of the two considered op-
tions (with and without insurance) can be calculated 
and compared under CPT. Applying the logic underly-
ing the optimization approaches proposed by HENS 
and MAYER (2014) and LEVY and LEVY (2004) in-
stead of what is proposed here to constrained optimi-
zation is challenging. These approaches require first to 
construct efficient M-V points to choose from. In a 
constrained optimization model, this would mean to 
implement an approach such a MOTAD and solve it 
at different levels of risk aversion, before searching 
the best one under the CPT criterion over the set of 
optimized M-V solutions. Crops yield distribution are 
typically skewed and can therefore not be normally 
distributed (cf. CONRADT et al., 2015). This violates 
the condition by LEVY and LEVY (2004) which prove 
formally that normality (besides other conditions) is 
required to render the CPT efficient solutions a subset 
of the M-V frontier. Picking the best solution under 
CPT from solutions optimized under MOTAD or M-V 
and different levels of risk aversion is therefore not 
guaranteed to find an (approximate) overall best CPT 
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solution. Additionally, generating many M-V optimal 
solutions can be computationally intensive if the mod-
el is a MIP. Moreover, it requires additional code to 
design, run and collect these experiments. 

The proposed implementation is based on distinct 
futures. This is relatively common in optimization 
approaches and also proposed in existing approaches 
to maximize utility under CPT by HENS and MEYER 
(2014), LEVY and LEVY (2004) and COELHO et al. 
(2012). It gives full flexibility with regard to the un-
derlying data generation process. If not observed time 
series of stochastic variables are used as here, but 
random draws, deciding on a set of representative 
outcomes can be challenging. Approaches such as 
Latin Hypercube Sampling considering co-variances 
(IMAN and CONOVER, 1980) or scenario reduction (see 
for instance SPIEGEL et al., 2020) can help to escape 
the curse-of-dimensionality in this case. 

A challenge provides, however, the combination 
of distinct futures and the subjective weighting. The 
marginal utility of a change in the pay-off in a specific 
future under CPT depends on the marginal change on 
the power utility function times the weight of this 
future. Under the TK weighting function, the differ-
ences in weights solely depend on the order of the 
pay-offs, not on their differences. Large differences in 
the weights and thus in the marginal utility between 
the ordered pay-offs can, therefore, be accompanied 
with quite small differences in their pay-offs. This is 
found in our example (see Table 1). The optimal pay-
offs in the three cases with the most extreme losses 
differ by less 900 €, which is around 3% of the spread 
of the pay-offs and one percent of their mean. But 
their weights differ between 5% and 14%. Improving 
the pay-off in the worst case carries hence a very large 
weight, even compared to other cases with similarly 
large losses. Using distinct futures, this leads also to 
order dependent jumpiness in the marginal utility, a 
reason why the optimization with endogenous order-
ing is computationally demanding. This explains the 
perhaps at first glance curious result that the two 
smallest simulated pay-offs are exactly equal (see 
Table 1). If the pay-off of the worst future would be 
improved at this point by a change of the farm pro-
gram or of insured acreages, their order would be 
likely reversed. The resulting switch of their weights 
would likely trigger a re-adjustment in the opposite 
direction.  

The implementation of CPT or other risk-utility 
functions in a constrained optimization model requires 
parameters which describe in quite some detail the 

risk behavior of the agent. While there is little doubt 
that the general insights into risk behavior from exper-
iments are valid, to which extent actual parameter 
values from experiments can be transferred to the field 
has been debated for long (cf. LEVITT and LIST, 2007). 
One way to advance here is to check the sensitivity of 
simulated outcomes to the parameter choice, similar to 
the HARDAKER et al. (2004) concept of stochastic 
dominance analysis with respect to a function. DAL-
HAUS et al. (2020) therefore analyze different parame-
ter sets from literature. Another uncertainty related to 
CPT addresses BABCOCK (2015) by considering dif-
ferent farm income indicators to define gains and 
losses and risk utility. 

Instead of exploring new types of risk utility in 
constrained optimization which require (agent specif-
ic) parameters relating to risk utility, SPIEGEL et al. 
(2021) propose to optimize the farm program under 
constraints depicting second-order stochastic domi-
nance against a given benchmark. Such an optimized 
program should be preferred by any risk-neutral or 
risk-averse decision taker, but not necessarily by an 
agent under CPT which implies risk-loving on the loss 
segment. DALHAUS et al. (2020) therefore define crop 
yield insurance contracts which are attractive to farm-
ers under EU and CPT. 

Another approach in the context of CPT and con-
straint optimization is taken by HUBER et al. (2020). 
They apply CPT to assess the satisfaction level of the 
farmer with their current farming program. They 
compare the prospect value of a number of past reali-
zations of farm income with a reference income level 
in a recursive-dynamic setting. If this prospect value 
undercuts the reference level, new farming options are 
searched for, in their example with regard to weed 
control, and a new farm program is optimized in a 
deterministic setting to maximize farm income. 

6.2 Computational Considerations 
The use of the SOS2 variables and the integers re-
quired for the endogenous sorting increases the com-
putational burden compared to a standard risk-free 
model considerably. Modern MIP solver have effi-
cient algorithm to implement the required SOS2 vari-
ables. The number of the related integers for the ap-
proximation of the utility function is determined by 
the product of the approximation segments and fu-
tures. Tests not documented here showed that using 
fewer approximation segments slightly speeds up the 
solution process, but increases as expected the maxi-
mal errors in the approximation. It had, however, here 
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no discernable impact on the simulated crop acreages 
and insured areas. But the low sensitivity found in this 
respect might depend on the specific case. 

The number of integer variables related to the 
endogenous sorting of the pay-offs is equal to the 
square of the number of considered futures, and seems 
to provoke a higher computational burden compared 
to SOS2 variables linked to the approximation of the 
utility function. If observed time series are used and 
the solution time is considered critical, the user could 
only drop some observations to reduce the number of 
considered futures to speed up the solution. This could 
be solely recommended if far more observations than 
for two decades such as in our example would be 
available. If random draws from distributions are 
used, it might pay off to check carefully how many 
futures are necessary for an accurate representation of 
risk to avoid unnecessary long solution times. 

For optimization models so far not using integers, 
implementing the discussed CPT solution likely re-
quires a change in the solver. Its implementation into 
constrained optimization models with non-linear con-
straints which are not quadratic might prove especial-
ly challenging. The set of available general mixed 
non-linear solvers required in this case is still limited 
and the computational burden to solve this type of 
model is found as quite high (cf. VIGERSKE, 2017). 

An alternative to the computationally demanding 
endogenous sorting is the use of iterative updates to 
then fixed weights for the futures. Tests have shown 
that this approach can provoke cycling. More im-
portantly, it is impossible to avoid solutions under 
fixed weights which propose extreme losses in futures 
with lower subjective weights as the optimum. This is 
inconsistent with the assumptions of CPT. 

6.3 Empirical Example and Modelling  
Approach 

The analyzed crop insurance product does not exist in 
the region, it is hypothetical. Therefore, a rather sim-
ple and transparent option is chosen which bases the 
insured risks on reported regional yields. Such insur-
ance products are available for instance in the US 
since decades as so-called Area Yield Protection plans 
(cf. SKEES et al. 1997). They carry a basis risk as farm 
specific yield fluctuations differ from regional ones 
(see FINGER, 2012). Basis risk cannot be assessed here 
due to missing matching time series of farm-scale 
yields. In order to concentrate on the CPT implemen-
tation, no evolved crop yield insurance options such 
as index-based products are here designed and evalu-

ated under CPT, such as by DALHAUS et al. (2020). 
This would probably also be of limited merit if basic 
risk cannot be considered. 

Equally, no state-contingent crop management is 
considered. This assumption might be challenged. For 
instance, drought damage early in the growing season 
under rain-fed conditions might trigger down-side 
adjustments in costly plant-protection measures which 
reduces the financial risk related to volatile yields. On 
the other hand, the damage related to crop failures in 
here solely considers the revenue loss. In reality, fur-
ther costs might occur, such as interest on additional 
loans needed to cover production costs if revenues are 
no longer sufficient to do so. 

The analyzed volatility relates to a single year. 
Leaving discussions about climate change aside, there 
is no obvious reason to assume that weather events in 
follow-up years are strongly positively correlated, 
such as having with a higher probability a dry after a 
dry or a wet after a wet year. This means that summed 
up weather driven yield fluctuations over multiple 
years are likely to cancel each other out, at least par-
tially (cf. ODENING and SHEN, 2014). Furthermore, if 
farmers have some financial buffering capacity, for 
instance, by credit lines on their current account or the 
possibility to postpone investments at farm or house-
hold level, additional risk management options exist 
which are not considered here. Such options further 
flatten the distribution of farm incomes over multiple 
years. SPIEGEL et al. (2020) therefore consider the 
distribution of wealth defined as the Net-Presence 
Value of the farm operation over a longer simulation 
horizon when assessing production and market risks, 
instead of focusing on inter-annual fluctuations. It is 
likely that agents treat risk in final wealth different 
from risk in yearly income. Accordingly, the parame-
ter choice in the risk utility function needs to consider 
the simulated time horizon. Equally, if parameters are 
taken from experiments, the time horizon of the simu-
lation model should match the framing of experi-
ments. 

The detailed discussion of one of the analyzed in-
surance option underlines that the optimization ap-
proach fine-tunes the risk management options to the 
considered futures (or state-of-natures). This can ren-
der the results, at least in detail, quite sensitive to spe-
cific realizations of random variables. It is, therefore, 
not unlikely that, for instance, prolonging the yield 
time series once new data become available could 
provoke some changes to the optimum solution. 
Changes are especially likely if new observations 



GJAE 71 (2022), Number 4 

202 

change the extreme cases which carry a high weight in 
overall risk utility. Classical moment-based approach-
es such as E-V are less sensitive in this respect. 

Finally, the reader is reminded of some obvious 
consequences of offering (subsidized) crop insurance, 
also shown by our results. Opting into crop insurance, 
as long as it is not fully subsidized, can make farm- 
ers poorer, only, even if subjectively better off, if it 
does not substitute some more expensive pre-existing 
risk management strategy. This asks for a careful 
evaluation of the usefulness of subsidized crop insur-
ance, especially in cases where the production risk is 
moderate and unlikely to threaten the survival of the 
farm. 

7 Summary and Conclusions 
The proposed combination of endogenous sorting of 
the pay-offs and a piece-wise linear approximation of 
the risk utility function allows to optimize risk utility 
under CPT in MIP based simulation approaches. In its 
current form, it is applicable only if all futures are 
considered equally likely. The implementation opens 
the door for the combination of experiments and 
econometrics to estimate parameters related to CPT 
and follow-up optimization in evolved farm-scale 
models to simulate the optimal portfolio of existing or 
novel risk management instruments, and quantify 
from there economic, social and environmental indi-
cators. Such analysis is especially rich if parameters 
related to risk utility are farmer and farm specific and 
larger samples of farms are analyzed.  

The CPT implementation is explored here by 
analyzing the uptake of crop insurance in a case-study 
farm in Germany, using observed regional yields to 
describe stochastics and to design different insurance 
variants. The optimal uptake rate of the insurance is 
found to depend on its attributes (strike level, costs) 
and to interact with adjustments in the farm program. 
The latter impact of crop insurance was so far not 
considered in studies which analyzed new or existing 
insurance products under CPT, assuming fixed farm 
management. 

From a numerical perspective, the implementa-
tion requires integer variables which provokes a size-
able increase in the computational burden. For optimi-
zation model so far not using integers, a change in the 
required solver is likely. An implementation in models 
with non-linear constraints which are not quadratic 
might prove challenging as the set of available general 
mixed non-linear solvers is still limited. 
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