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Abstract 
This paper provides an assessment of technical effi-
ciency and productivity change for a sample of large-
scale arable farms in Germany. For this, the paper 
applies input-oriented Data Envelopment Analysis 
(DEA) and Malmquist Index (MI) methods in combi-
nation with bootstrapping to a balanced five-year 
panel data set of 86 German large-scale arable farms 
over a time period from 2012/2013 to 2016/2017. The 
DEA results of the original sample show a mean in-
put-saving potential of 9.2 % across farms and time 
periods. The bootstrapped confidence intervals indi-
cate no statistically significant difference among the 
mean scores for individual years, however significant 
differences exist between individual farms. The results 
of the MI analysis of the original sample suggest a 
mean annual growth in total factor productivity of 
5.4 %. This progress was driven by technical change 
(6.5 %) and happened despite a small average deteri-
oration in change in technical efficiency (1.1 %). The 
progress in total factor productivity as well as tech-
nical change is statistically underpinned through the 
bootstrapped confidence intervals. The result of 
change in technical efficiency computed from the 
original sample cannot be confirmed statistically as 
the corresponding confidence interval includes unity. 

Keywords 
Efficiency, productivity, DEA, Malmquist, bootstrap-
ping, arable farming 

1 Introduction 
The world is facing the challenge of feeding approxi-
mately nine billion people by the middle of the centu-
ry (GODFRAY et al., 2010). In order to meet the  
rising demand for food, global agricultural production 
needs to be increased by at least 60 % between  
2012 and 2050 (ALEXANDRATOS and BRUINSMA, 
2012). Human population increase, urbanization, a 
rise in per capita incomes and a westernization of 
diets in transformation countries are the key drivers  
of the growing food demand (GRAFTON et al., 2015). 

Since certain production factors such as land or water 
are limited, growth in agricultural productivity and  
a more efficient way of utilizing limited inputs are 
necessary if the agricultural sector’s output is to keep 
up with the increasing demand for food and raw mate-
rials (ALEXANDRATOS and BRUINSMA, 2012; COELLI 
and RAO, 2005). Productivity increases have also 
become more important from an individual farm en-
terprise point of view, as rising production costs  
as well as domestic competition for limited factors 
such as land have enhanced the value of productivity 
growth and technical efficiency (BALMANN and 
SCHAFT, 2008).  

In the context of assessing technical efficiency 
the nonparametric Data Envelopment Analysis (DEA) 
approach constructs an efficient frontier consisting of 
the best observations of the sample at a certain time. 
Malmquist indices (MI), which also use the DEA ap-
proach in their calculation, display growth in total 
factor productivity (TFP), which can be further de-
composed into changes in technical efficiency and 
changes in technology (BALCOMBE et al., 2008a; 
FÄRE et al., 1994). Obtaining efficiency scores and 
consideration of productivity growth and its compo-
nents over time can contribute towards a more eco-
nomical factor input use and a more efficient produc-
tion program (OUDE LANSINK et al., 2002). Over the 
past 20 years a broad variety of studies have been 
carried out in many different countries using DEA and 
MI approaches comparing individual farm data. The 
DEA methodology has proven very popular among 
productivity researchers, as it has the advantage that 
benchmark enterprises can be identified in the case of 
non-monetary input and output variables. However, 
there is one major disadvantage to the DEA proce-
dure, which might lead to ambiguous results. As the 
DEA does not provide any information regarding the 
estimates’ uncertainty, an assessment of whether dif-
ferences between estimates are statistically significant 
is not possible (ODECK, 2009). As a solution to this 
limitation SIMAR and WILSON (1998, 1999) proposed 
an approach of applying EFRON’s (1992) bootstrap-
ping method to the results of the DEA and MI analy-
sis. Their approach results in the calculation of boot-
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strap confidence intervals, which allow an interpreta-
tion regarding statistical inference and significance 
and therefore more robust conclusions (ODECK, 
2009). This remedy to one of DEA’s severest limita-
tions, however, has not been used in many studies 
regarding agriculture. Even fewer studies apply this 
approach on an individual farm enterprise level in 
combination with MI calculations from a panel data 
set. So far, a study on 19 Eastern Norwegian grain 
farms over ten years by ODECK (2009) is the only 
paper combining the calculation of technical efficien-
cy scores via DEA and productivity growth through 
MI with bootstrapping as suggested by SIMAR and 
WILSON (1998, 1999). Empirical research on technical 
efficiency and productivity change for German arable 
farms - especially using DEA and MI - has not been 
conducted in a long time. 

This paper applies DEA and MI methods as well 
as bootstrapping of those results to a five-year bal-
anced panel data set of 86 large-scale arable farms in 
Germany over a time period from 2012/2013 to 
2016/2017. Against the background of the increasing 
size of arable farms in the course of advancing struc-
tural change, the consideration of large-scale farms 
seems to make sense, as they represent the future of 
the sector. The aim of this research is twofold. Firstly, 
this paper seeks to determine the degree of technical 
efficiency in German large-scale arable farming. Sec-
ondly, it aims to evaluate the magnitude of productivi-
ty change in German large-scale arable farming and 
whether it is mainly due to changes in technical effi-
ciency or changes in technology for a time period that 
has not been evaluated so far. In this context it aims to 
provide statistical evidence regarding efficiency and 
productivity measurements for German arable farms 
and to illustrate the bootstrapping procedure of DEA 
and MI results in an agricultural application. 

To the best of our knowledge there are multiple 
factors differentiating this study from previous ones. It 
is the first study combining DEA, MI and bootstrap-
ping of both methods on an individual farm level data 
set for German agriculture. A micro-level analysis 
offers the most in-depth understanding of a sector 
(MARZEC and PISULEWSKI, 2019). The balanced pan-
el data set of 86 farms over five years is the largest 
assessed on the individual farm level using the boot-
strapping approach for DEA and MI combined. There-
fore, this study’s results are more reliable than previ-
ous studies as the nonparametric DEA performs better 
the more observations are included (BANKER  
et al., 1984). The larger sample size, the timeliness  

of the assessed time period from 2012/2013 to 
2016/2017 as well as the regional focus on Germany - 
the European Union’s second largest crop producer - 
differentiates the study from ODECK (2009). Addi-
tionally, more production inputs are embedded in the 
theoretical model which enables a more precise de-
scription of the production process. Lastly, most other 
studies on technical efficiency evaluate shorter peri-
ods of time. The results of studies on technical effi-
ciency and productivity growth are particularly of 
interest to policy makers since these factors play a 
vital role in the planning of structural transformation 
processes and agricultural subsidy programs and re-
forms as well as in comparisons of the level of eco-
nomic development between countries and regions 
(FRANCKSEN and LATACZ-LOHMANN, 2006; LISSITSA 
and ODENING, 2001). Furthermore, the European Un-
ion aims to reduce resource inputs within the food 
chain by 20 % by the year 2020 (European Commis-
sion, 2011) and has declared an increase in efficiency 
and productivity in the agricultural production as a 
priority (European Union, 2013; ŠPIČKA, 2015). 

The remainder of this paper is structured as fol-
lows: Section 2 provides an overview of the existing 
research on efficiency and productivity change with 
bootstrapping on the individual farm level as well as a 
brief summary of previous findings regarding effi-
ciency and productivity in the German agricultural 
sector. Subsequently section 3 briefly explains the 
applied methodology of DEA, MI and bootstrapping 
before the assessed data set is described in section 4. 
The results of this study are presented and discussed 
in section 5 and section 6 offers some concluding 
remarks. 

2 Definition of terms and literature 
review 

This section first explains the terms of technical effi-
ciency and productivity change with their respective 
methods of evaluation. Afterwards a brief overview of 
the existing literature regarding DEA, MI and boot-
strapping as well as findings on technical efficiency 
and productivity growth in German agriculture is pro-
vided. 

Technical efficiency in the context of this paper’s 
methodology is based on FARRELL (1957). The con-
cept of Farrell’s measure is to look at proportional 
changes - the same percentage decrease in all inputs or 
the same percentage increase in all outputs. Therefore, 
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the Farrell input efficiency measures how much the 
input can be reduced without affecting the output. It’s 
the most common approach of measuring the efficien-
cy in a multi-input multi-output setting (BOGETOFT 
and OTTO, 2011). Efficiency can be estimated using 
parametric or nonparametric measures. When using a 
parametric estimation measure a stochastic production 
frontier or a stochastic cost frontier has to be specified. 
This Stochastic Frontier Analysis (SFA) allows for 
hypothesis testing, as it includes a stochastic error. 
However, the main disadvantage of this procedure is 
the fact that an explicit functional form and distribu-
tion have to be assumed. The nonparametric DEA 
introduced by CHARNES et al. (1978) has the ad-
vantage of no parametric restrictions on the observed 
technology reducing the potential of model misspecifi-
cation. The major disadvantage of DEA is the suscep-
tibility to measurement errors and data noise (HOANG 
LINH, 2012). Generally, DEA approaches are consid-
ered more suitable opposed to other efficiency 
measures if there is a certain degree of uncertainty 
regarding the data generating process (DGP), if price 
data is not available or if the existing price data cannot 
sufficiently express economic scarcity (BOGETOFT and 
OTTO, 2011; MUSSHOFF et al., 2009). 

SOLOW (1956) was the first to assign the unex-
plained increase in output to technological change and 
therefore shaped the term of TFP in 1956. TFP is the 
amount of output, which the input factors used in pro-
duction do not account for. TFP is determined by the 
efficiency and intensity with which the input factors 
are utilized (COMIN, 2010). The growth rate of TFP is 
usually interpreted as a measure of technical change 
(BRÜMMER et al., 2002). The first researchers to at-
tempt a decomposition of TFP growth in individual 
components were NISHIMIZU and PAGE (1982) fol-
lowed by BAUER (1990), who used a parametric ap-
proach, which required exact functions for technolo-
gy. In 1994 FÄRE et al. introduced the first nonpara-
metric decomposition approach. By calculating the 
geometric mean of two-DEA estimated MI they de-
composed TFP growth into changes in technical effi-
ciency and changes in technology over time. This 
method constructs a best practice frontier based on the 
data included in the sample and compares each Deci-
sion Making Unit (DMU) to said frontier. If a DMU 
gets closer to the frontier (catching-up) it’s considered 
a growth in efficiency, if the frontier shifts with regard 
to a DMU’s input mix (innovation) it is considered a 
technological change (FÄRE et al., 1994). A more 

extensive description of this approach is given in the 
methodology section. 

This approach has been widely used to obtain a 
more exact assessment of TFP growth and its compo-
nents. Many early research papers focus on comparing 
agricultural sectors of different countries (BUREAU et 
al., 1995; FUGLIE, 2010; FULGINITI and PERRIN, 
1997; NKAMLEU, 2004; SUHARIYANTO and THIRTLE, 
2001). But there has also been a broad range of DEA 
and MI research without bootstrapping on the individ-
ual farm level. OUDE LANSINK et al. (2002) for in-
stance compared efficiency and productivity growth 
of conventional and organic farms from Finland over 
a three-year period. THIELE and BRODERSEN (1999) 
compared the efficiency of West and East German 
farms over a time period from 1995 to 1997. They 
showed that West German crop farms were more pro-
ductive than East German crop farms with an average 
input reduction potential of 17 % and 22 %, respec-
tively. ZAWALINSKA (2004) and LATRUFFE (2004) 
both evaluated individual farm data from Poland over 
the time period from 1996 to 2000. Their assessments 
showed a decline in productivity and inconsistent 
results regarding the technical efficiency. Other ex-
amples are provided by GOCHT and BALCOMBE 
(2006) for Slovenian wheat farms or by COELLI et al. 
(2006) for Belgian mixed farms. 

Table 1 provides an overview of recent studies 
using DEA or MI in combination with bootstrapping 
as suggested by SIMAR and WILSON (1998, 1999). It 
is notable that only the study by ODECK (2009) evalu-
ated technical efficiency and the MI with its decom-
posed components in combination with the boot-
strapped confidence intervals as is done in this paper. 
When interpreting the results, one has to differentiate 
between an output-oriented and an input-oriented 
approach of calculating DEA measures. The approach 
depends on the point of view, whether farmers are to 
be considered input minimizers or output maximizers. 
However, either orientation allows an interpretation of 
resource efficiency, simply from different perspec-
tives (BOGETOFT and OTTO, 2011; ODECK, 2009). It 
becomes apparent that the results of the studies 
strongly differ as they all evaluate different geograph-
ical regions and time periods. In contrast to most stud-
ies presented in Table 1, this paper is based on a bal-
anced panel. Therefore, all data are available for all 
analyzed farm enterprises in each year considered, 
which improves the statistical analysis compared to 
unbalanced data sets with data gaps. 
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Besides THIELE and BRODERSEN’s (1999) study, 
which was described above, only very limited re-
search has been conducted on technical efficiency and 
productivity change in the German agricultural sector. 
TIEDEMANN and LATACZ-LOHMANN (2011) com-
pared productivity growth of organic and conventional 
German arable farms from 1999 to 2007 using an  
MI approach based on SFA efficiency scores. The 
conventional arable farms showed a mean annual 
productivity growth of 0.46 %, while organic arable 
farms showed a mean annual productivity deteriora-
tion of -0.58 %. According to the DEA approach of 
FRANCKSEN and LATACZ-LOHMANN (2006), the 
German agricultural sector had a technical efficiency 
of 0.917 under the assumption of variable returns to 
scale (VRS) and input-orientation between 1998 and 
2001. Their MI analysis resulted in a mean annual 
productivity growth of 2.37 %. 

3 Methodology 
This section describes the three-stage methodological 
procedure carried out in this study. First year-by-year 
efficiency scores are obtained by applying DEA. The 
second step uses MI and its components in order to 
measure performance changes over time. Finally, 
bootstrapping as suggested by SIMAR and WILSON 
(1998, 1999) is applied to calculate confidence inter-
vals for the obtained efficiency and productivity 
scores. The description of this methodology is mainly 
based on FÄRE et al. (1994; 2013), BOGETOFT and 
OTTO (2011) as well as ODECK (2009). 

3.1 Data Envelopment Analysis 
DEA is a linear programming method that estimates 
best practice production frontiers based on input and 
output data from a sample of DMUs for an individual 

Table 1. Overview of recent studies using DEA or MI in combination with bootstrapping 

Study Country Data 
set 

Years Orientation 
of model 

DEA (VRS) 
Mean technical 

efficiency 

Mean MI/ 
Mean TC/ 
Mean EC 

Bootstrapped 
confidence inter-
val (95%) tech-
nical efficiency 

Bootstrapped 
confidence 

interval 
(95%) MI 

BRÜMMER 
(2001) 

Slovenia 147 
mixed 
farms 

1995-
1996 

Output-
oriented 

0.440 - Average width of 
0.09 

- 

BALCOMBE 
et al. 
(2008b) 

Bangladesh 295 
rice 

farms 

2003 Output-
oriented 

0.590 - 0.530 – 0.630 - 

LATRUFFE et 
al. (2008) 

Poland 250 
mixed 
farms 

1996-
2000 

Input-
oriented 

- 0.980/ 
0.940/ 
1.040 

- 0.770 – 1.310 

ODECK 
(2009)* 

Norway 19 
crop 
farms 

1987-
1997 

Input-
oriented 

0.893 1.380/ 
1.210/ 
1.120 

0.830 – 0.949 1.100 – 1.770 

MUGERA 
and LANGE-
MEIER 
(2011) 

USA 
(Kansas) 

564 
mixed 
farms 

1993-
2007 

Input-
oriented 

0.593 - Average width of 
0.043 

- 

ABATANIA et 
al. (2012) 

Ghana 189 
crop 
farms 

2005 Input-
oriented 

0.859 - 0.625 – 0.854 - 

HOANG 
LINH (2012) 

Vietnam 595 
rice 

farms 

2003-
2004 

Input-
oriented 

0.785 - 0.593 – 0.771 - 

SHAMSUDIN 
(2014) 

Malaysia 147 
rice 

farms 

2011 Output-
oriented 

0.636 - 0.502 – 0.832 - 

*Malmquist index (MI), change in technical efficiency (EC) and technical change (TC) scores are presented as inverse, i.e. 1.380 corre-
sponds to 0.620 in input-oriented model  
Source: Compiled and designed by author 
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year. It constructs a piece-wise linear surface over  
the different data points by solving a sequence of line-
ar programming problems (BOGETOFT and OTTO, 
2011; CHARNES et al., 1978; COELLI and RAO, 2005). 
In this study the individual farms each constitute a 
DMU. DMUs located directly on the frontier have an 
efficiency score of 1 (or 100 %). The efficiency score 
of all inefficient DMUs can be obtained from the  
distance from the frontier, whereby efficiency is 
measured in comparison with the nearest DMU on the 
frontier. This way each DMU’s efficiency is measured 
in comparison with the most similar production struc-
ture from the data set (FRANCKSEN and LATACZ-
LOHMANN, 2006). The DEA can either be input-  
or output-oriented. Consistent with SIMAR and  
WILSON’s (1998) approach as well as other compara-
ble studies (see table 1) input-oriented technical effi-
ciency measures are calculated assuming variable 
(VRS) and constant returns to scale (CRS). The latter 
are necessary to further calculate MI as described in 
subsection 3.2. In an input-oriented context the DEA 
model minimizes the input vector while holding  
the output vector constant (BOGETOFT and OTTO, 
2011). An input-oriented DEA model for the kth 
DMU under the assumption of VRS is defined as fol-
lows (BOGETOFT and OTTO, 2011): 

min
𝜗𝜗,𝜆𝜆

𝜗𝜗 

𝑠𝑠. 𝑡𝑡. 
−𝑦𝑦𝑘𝑘 + 𝑌𝑌𝑌𝑌 ≥ 0 
𝜗𝜗𝑥𝑥𝑘𝑘 − 𝑋𝑋𝑌𝑌 ≥ 0 

�𝑌𝑌𝑘𝑘

𝐾𝐾

𝑘𝑘=1

= 1 

𝑌𝑌 ≥ 0 

(1) 

The resulting efficiency score  ranges between 0 
and 1,  constitutes a vector of multiplier weights 
and X and Y are matrixes containing all inputs x and 

outputs y. The convexity constraint  limit-

ing the summation of the multiplier weights equal to 
one is necessary under the assumption of VRS. The 
DEA model assuming CRS is identical but without the 
convexity constraint (BOGETOFT and OTTO, 2011; 
ODECK, 2009). 

3.2 Malmquist index 
The MI is defined by input and output distance func-
tions. It measures changes in productivity between 

two time periods. Distance functions can describe a 
multiple input and output technology without a speci-
fication of behavioral objectives such as cost minimi-
zation or profit maximization. In this study input-
oriented MI are calculated in order to compare 
productivity growth across DMUs and years. Fur-
thermore, productivity was decomposed into technical 
change (TC) and change in technical efficiency (EC). 
The MI between year t and year t+1 for inputs x and 
outputs y based on an input-distance function DI is 
defined as follows (FÄRE et al., 1994): 

 (2) 

If MI is less than 1, productivity growth is positive. 
FÄRE et al. (1994) further developed the model and 
showed that the geometric mean of the t and t+1 MI 
provides a better measure of productivity change be-
tween time periods t and t+1: 

 (3) 

Furthermore, they proved that equation (3) can be 
rearranged in order to provide the decomposition of 
productivity growth in TC and EC: 

 

(4) 

The ratio outside the brackets measures EC between 
time periods t and t+1, whereas the rest of the term 
measures TC. If  has a value smaller than unity 
it indicates productivity growth, a value greater than 
unity indicates deterioration. The values of the com-
ponents EC and TC are to be interpreted the same 
way. Given suitable panel data and under the assump-
tion of CRS technology the distance functions for an 
individual DMU j referring to a single time period t or 
t+1 of equation (4) can be computed with DEA linear 
programming (FÄRE et al., 1994): 
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(5) 

The model assumes that there are k = 1, … , K obser-
vations of n = 1, … , N inputs x and m = 1, … , M 
outputs y. The calculation of the distance functions 
referring to the two different time periods t and t+1 
differs and reads as follows (FÄRE et al., 1994): 

 
(6) 

3.3 Bootstrapping of DEA and MI 
After calculating efficiency scores and productivity 
indices we have to obtain the appropriate confidence 
intervals for them in order to make any reliable state-
ments concerning the results’ statistical significance. 
EFRON's (1992) approach to bootstrapping as suggest-
ed by SIMAR and WILSON (1998; 1999) has proven 
effective in examining the sensitivity of DEA effi-
ciency scores and MI to sampling variation. It is based 
on the assumption that for a sample with an unknown 
DGP, the DGP can be estimated by developing a 
bootstrap sample using the original sample. In order to 
do so an empirical distribution of the relevant varia-
bles is constructed by sampling the original data set 
repeatedly generating an appropriately large number 
(B) of pseudo-samples. In this study 1 000 pseudo-
samples (B=1 000) are generated as originally sug-
gested by HALL (1986) to ensure adequate coverage  
of confidence intervals. Once a large and consistent 
estimator of the DGP is derived, the bootstrap distri-
bution will imitate the original sampling distribution1. 
                                                           
1  The notations of the variables in this subsection are to 

be understood as follows: a hat denotes an estimated 

According to SIMAR and WILSON (1998) the bootstrap 
sample for DEA efficiency scores is expressed as 

 with * denoting the bootstrap sample. An 
estimator’s bias can now be estimated using the boot-

strap sample as biasi�= ϑ�i
*- ϑ�i, with ϑ�*= 1

B
∑ ϑ�ib

*B
b=1 . 

Afterwards the bias corrected estimator for  can be 
expressed as (SIMAR and WILSON, 1998): 

 (7) 

Furthermore, it is now possible to calculate (1-α)-
percent confidence intervals for �̂�𝜗𝑖𝑖 using the empirical 
distribution of ��̂�𝜗𝑖𝑖𝑖𝑖∗ �𝑖𝑖=1

𝐵𝐵  (SIMAR and WILSON, 1998): 

 (8) 

SIMAR and WILSON (1999) showed that confidence 
intervals of MI2 can be generated using the original 
estimates 𝑀𝑀�𝐼𝐼

𝑡𝑡,𝑡𝑡+1 as well as bootstrap procedures result-
ing in the MI bootstrap sample �𝑀𝑀�𝑡𝑡+1,𝑘𝑘

∗ �𝑖𝑖=1
𝐵𝐵 . The basis 

for this is the percentile method, which means obtain-
ing the values 𝑎𝑎𝛼𝛼∗  and 𝑏𝑏𝛼𝛼∗  while holding the statement 
𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏�−𝑏𝑏𝛼𝛼∗ ≤ 𝑀𝑀�𝑡𝑡+1,𝑘𝑘 − 𝑀𝑀𝑡𝑡+1,𝑘𝑘 ≤ −𝑎𝑎𝛼𝛼∗ �𝑦𝑦𝑗𝑗� ≈ 1 − 𝛼𝛼 
true with high probability conditioned on the original 
sample yj. If 𝐵𝐵 → ∞ the probability approaches one. 
This step further allows an estimation of (1-α)-percent 
confidence intervals as follows (SIMAR and WILSON, 
1999): 

 (9) 

If these bootstrapped confidence intervals do not in-
clude the number one then the estimated MI statisti-
cally significantly differs from unity and therefore 
productivity growth (if smaller than 0) or deterioration 
(if greater than 0) is indicated. A more extensive de-
scription of the applied methodology can be found in 
BOGETOFT and OTTO (2011), ODECK (2009) and 
mainly in SIMAR and WILSON (1998; 1999). All cal-
culations were performed in R using the FEAR pack-
age by WILSON (2008). 

                                                                                                 
variable, an overscore denotes an empirical mean of a 
sample and a tilde denotes a bias-corrected variable. 

2  In accordance with the existing literature (cf. ODECK, 
2009), the notation of the original MI model of FÄRE et 
al. (1994) is adapted to the notation of the bootstrap 
methodology of SIMAR and WILSON (1999). 
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4 Data 
This study is based on a balanced panel data set con-
sisting of a sample of 86 German large-scale arable 
farms over a time period of five years. The assessed 
time period covers the fiscal years 2012/2013 to 
2016/2017. The data was provided by a German agri-
cultural management consultancy, which advises and 
analyzes all their farm enterprises annually. The 86 
farms are geographically spread out over Germany 
with a majority located in the major crop producing 
regions of North, Central and Eastern Germany. All of 
them purely practice conventional crop farming (spe-
cialist cereals, oilseeds and protein crops) without a 
livestock branch or the cultivation of organic crops. 
Farms cultivating specialist permanent crops (e.g. 
wine or fruits) or specialist field vegetables (e.g. cab-
bage, asparagus) were already excluded in advance by 
the management consultancy providing the data. 

Six input variables and one output variable were 
included in the DEA and MI models to assess tech-
nical efficiency scores and productivity change over 
time. Including too many input and output variables 
leads to a limitation of the DEA method. The ap-
proach loses its discriminatory power and therefore 
the ability to distinguish the better performers from 
the rest, as too many DMUs tend to be efficient. 

Crop output in Euro (€) is used as output meas-
ure in the model3. It describes the monetary value  
of gross crop production on the evaluated farm and  
is given by adding the products of crop yield and  
crop market price of the different crops grown. Using 
the crop output for efficiency and productivity re-
search in arable farming is a very common approach 
(cf. OUDE LANSINK et al., 2002; LATRUFFE et al., 
2008; THIELE and BRODERSEN, 1999; BRÜMMER, 
2001; FRANCKSEN and LATACZ-LOHMANN, 2006). 
Choosing the monetary crop output is advantageous 
regarding the comparability of the individual farms, 

                                                           
3  Farm subsidies were not taken into account in this con-

text to solely assess the arable primary production. 

since it can be calculated for each farm, while quanti-
tative yields for different crops are not always equally 
available. The model’s six input measures constitute 
the major input factors in crop farming. Arable land in 
ha is a farm’s cultivated cropland, which is the pro-
ductive net area without extensively used land or fal-
low land. Seeds and planting material, fertilizer as 
well as crop protection are measured as monetary 
values in Euro (€). The labor (WH) input is represent-
ed as working hours, which includes hired labor, own-
er’s labor and family labor. The use of agricultural 
machinery is expressed in kilowatt hours (kWh) and 
introduced as machine power (kWh). The selection of 
input variables for crop production is consistent with a 
wide range of existing research such as GOCHT and 
BALCOMBE (2006), BALCOMBE et al. (2008b) or 
MONCHUK et al. (2010). 

Table 2 shows the main descriptive statistics for 
the seven variables used in this study. Mean, mini-
mum, maximum and standard deviation are calculated 
for the assessed 430 observations. There is a high 
variation in the output as well in all input variables. 
With an average size of 490 ha, the farms considered 
here are far above the German average. Therefore, 
results should be interpreted as representing large-
scale arable farms. 

5 Results and discussion 
In this section the methodology illustrated in section 3 
is applied to the panel data set of German arable farms 
described in the previous section. To begin, the results 
of the static year-to-year efficiency score analysis are 
presented before the productivity change over time is 
assessed afterwards. The confidence intervals derived 
through bootstrapping in order to account for statisti-
cal significance are also presented in the correspond-
ing sections. 

Table 2.  Main descriptive statistics for variables used (N=430) 
 Crop output 

(€) 
Arable land 

(ha) 
Seeds/ 

planting material (€) 
Fertilizer 

(€) 
Crop protection 

(€) 
Labor 
(WH) 

Machine power 
(kWh) 

Mean 854 026 490 52 020 102 772 91 214 5 175 330 356 
Min. 121 017 81 6 177 12 798 12 375 545 20 352 
Max. 3 669 057 2 187 185 496 495 264 422 091 17 850 1 870 501 
Std. dev. 572 234 309 35 103 73 567 63 287 3 094 219 212 

Source: Author’s calculations 
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5.1 DEA efficiency scores 
As described in the methodology section the input-
oriented technical efficiency scores are calculated 
using DEA under the assumption of VRS and CRS. 
However, the CRS efficiency scores are only neces-
sary for the assessment of productivity change, which 
is described later on. Since a CRS assumption is only 
adequate if all DMUs work at an optimal scale, the 
VRS assumption, which was introduced by BANKER 
et al. (1984) is the more appropriate model to use if 
there are good reasons to assume that the technology 
to be estimated exhibits variable returns to scale. Limi-
tations such as imperfect competition or a factor con-
straint might lead to a DMU not operating at optimal 
scale (HARTWICH and KYI, 1999). Table 3 shows the 
summary results of the original and bootstrapped effi-
ciency scores under the assumptions of input-orien-
tation and VRS. As described earlier, an input-
oriented technical efficiency score minimizes the  
degree to which input factors proportionally have to 
be reduced in order to produce the same output in  
a technically efficient manner or – in other words – it 
measures the potential for input savings. The upper 
panel of the table shows the original non-bootstrapped 
efficiency scores. The mean4 efficiency score across  
 

                                                           
4  Technical efficiency scores are not interval-scaled with 

regards to the input-saving potential, therefore one has 
to be careful when considering means of technical effi-
ciency, as these would normally require a metric scale. 
Deeper insights into scale levels and the interpretation 
of technical efficiency scores are provided by STEVENS 
(1946) and MUSSHOFF et al. (2009). In accordance with 

the five-year time period is 0.908, which indicates an 
input saving potential of 9.2 %. The mean efficiency 
scores of the individual years range between 0.887 
and 0.920. The minimum of the original efficiency 
scores presents the DMU with the highest input saving 
potential. The mean of the minimums across all five 
years is an input saving potential of 41.1 %. It is nota-
ble that 2014/2015 as the year with the highest mean 
efficiency score also shows the lowest minimum. The 
mean standard deviation of the original efficiency 
scores over the assessed time period is 0.100, with all 
individual years ranging close by. The results of the 
original efficiency scores indicate a high degree of 
homogeneity regarding technical efficiency in the 
sample, even though the farms’ input and output vari-
ables vary greatly as illustrated in table 2. A possible 
explanation for the high level of technical efficiency 
as well as said homogeneity lies within the source of 
the assessed data. Since the farms all receive econom-
ic advice from an agricultural consultancy, above-
average efficiency can be expected. 

The mean efficiency score, the bias corrected 
mean of the efficiency score and the standard devia-
tion of the efficiency score for the bootstrapped sam-
ple are presented in the middle panel of table 3. The 
bootstrap sample consists of 1 000 pseudo-samples as 
described in the methodology section. The average 
mean across the assessed time period is 0.908 just as it 
is for the original sample. However, the standard de-
viations of the mean efficiency scores are less than 
half the level of the original sample. The bias correct-

                                                                                                 
the existing literature the means were nevertheless 
shown in this study. 

Table 3. Summary results of original and bootstrapped efficiency scores (VRS) (N=430) 
 2012/13 2013/14 2014/15 2015/16 2016/17 Mean full period 

DEA scores 
Mean 0.887 0.901 0.920 0.912 0.920 0.908 
Min. 0.624 0.667 0.409 0.625 0.618 0.589 
Std. dev. 0.108 0.098 0.102 0.101 0.093 0.100 
Number of DMUs with 
an efficiency score of 1 25 25 34 32 31 - 
Bootstrap sample* 
Mean 0.887 0.901 0.920 0.912 0.920 0.908 
Bias corrected mean 0.834 0.854 0.872 0.868 0.876 0.861 
Std. dev. 0.041 0.037 0.038 0.037 0.037 0.038 
Bias corrected confidence interval, 95 % 
Lower bound 0.782 0.803 0.820 0.816 0.823 0.809 
Upper bound 0.883 0.898 0.917 0.909 0.917 0.905 

* based on 1 000 pseudo-samples 
Source: Author’s calculations 
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ed means for the individual years as well as the across 
time period average are notably lower than the regular 
estimate. Results show there is a positive bias for the 
bootstrapped sample. Regarding the bias, this study’s 
results differ from ODECK’s (2009) research on Nor-
wegian grain farms, which indicated that bias changes 
for the data set as a whole are negligible. 

In the lower panel of table 3 the bias corrected 
95 % confidence intervals for the bootstrapped sample 
are presented. SIMAR and WILSON (1998) state that 
caution should be observed when comparing perfor-
mance based on original efficiency scores. If there is 
an overlap between the confidence intervals of two 
different efficiency scores, one may not assume that 
they differ even if the original scores do. On this basis 
the fluctuations between the mean technical efficiency 
scores of the individual years cannot be confirmed 
with statistical significance as their confidence inter-
vals across all five years heavily overlap. To check the 
robustness of the results, the model was also calculat-
ed with four input variables (the monetary inputs seed, 
fertilizer and crop protection were combined into one 
variable). The results show that although the overall 
level of the efficiency scores decreases slightly due to 
the lower number of inputs, the core statements and 
dimensions remain unchanged. 

To illustrate the importance of deriving confi-
dence intervals when comparing performance based 
on original efficiency scores, a selection of individual 
farm data is presented in table 4. The farms 1, 35 and 
47 were selected as their results are suitable to 
demonstrate the issue. For instance, when comparing 
farm 1 and farm 35, their mean original efficiency 
scores indicate that farm 35 is more efficient as 0.936 
is larger than 0.871. Looking at the respective confi-
dence intervals derived through bootstrapping this 
statement can be considered true with a probability of 
95 %. The 95 % confidence intervals do not overlap. 
When comparing farm 1 and farm 47, the initial 
judgment is the same. The mean original efficiency 
scores indicate that farm 47 is more efficient than 

farm 1. However, since their respective confidence 
intervals overlap, the statement cannot be supported 
statistically in this case. 

5.2 Malmquist productivity indices 
After discussing the efficiency scores in the preceding 
section, the focus is now on TFP change and its com-
ponents over the assessed period from 2012/13 to 
2016/2017. As further described in the methodology 
section, input-oriented MI are calculated through 
DEA in order to compare productivity growth in 
German arable farming across years. Furthermore, 
productivity is decomposed into technical change 
(TC) and change in technical efficiency (EC). The 
DEA model used to assess MI, EC and TC assumes 
CRS, since GRIFELL-TATJÉ and LOVELL (1995) 
showed that under the assumption of non-constant 
returns to scale productivity change is not measured 
accurately by MI. Table 5 shows the summary results 
of annual productivity change and its components for 
the original sample. The results constitute the annual 
averages across DMUs and time periods. Note that in 
the context of MI, EC and TC all averages are by def-
inition geometric means (FÄRE et al., 1994). Under 
the assumption of input-orientation, values below one 
indicate growth and values above unity represent dete-
rioration.  
 
Table 5. Mean MI, EC & TC for original sam-

ple, 2012/13 - 2016/17 (CRS) 
 Malmquist 

index (MI) 
Efficiency 

change (EC) 
Technical 

change (TC) 
Mean 0.946 1.011 0.935 
Min. 0.873 0.935 0.874 
Max. 1.056 1.099 0.999 
Std. dev. 0.035 0.032 0.019 

Source: Author’s calculations 
 

Looking at the means across all units and time periods 
of the original sample, the TFP grew annually by 5.4 % 
on average. The advantages of the decomposable  

Table 4. Original efficiency scores and bootstrap of efficiency scores across selected DMUs and time 
(VRS) 

DMU Original efficiency scores per year Over the full period 
 2012/13 2013/14 2014/15 2015/16 2016/17 Mean Bootstr. 

mean 
Bias corr. 

mean 
Lower 
bound 

Upper 
bound 

1 0.833 0.941 0.963 1.000 0.618 0.871 0.871 0.833 0.783 0.868 
35 0.956 0.909 0.951 0.911 0.952 0.936 0.936 0.903 0.876 0.933 
47 0.861 1.000 1.000 1.000 1.000 0.972 0.972 0.903 0.826 0.969 

Source: Author’s calculations 
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productivity measure MI become apparent as one is 
able to specify what drove the productivity change. 
For the original sample TFP growth was driven by an 
average growth rate in TC of 6.5 %, which out-
weighed a slight average deterioration of EC (1.1 %). 
The minimums indicate the farms with the largest 
increases in MI, EC and TC, while the maximums 
indicate the smallest increases in these measures. 
12.7 % was the largest average annual growth in TFP 
achieved by a single DMU. Only seven out of 
86 farms (8.1 %) experienced an average annual dete-
rioration of TFP over the assessed time period with 
5.6 % p.a. marking the weakest DMU. 47 farms 
(54.7 %) experienced an average annual deterioration 
of efficiency change. EC, which describes catching-up 
towards the existing efficiency frontier or in other 
words growing input savings, was therefore not a con-
tributing factor towards productivity growth. This 
result is not contradictory to the high level of tech-
nical efficiency calculated from the static point of 
view (subsection 5.1) as the dynamic MI describes a 
different perspective. A DMU can show high tech-
nical efficiency for single time periods and still show 
deterioration in EC when plotting the development 
over time. This finding is in line with the results of 
LATRUFFE et al. (2008) for Polish farms. Technical 
change, which describes a shift with regards to a 
DMU’s input mix (innovation), was the driving factor 
of TFP growth. Every single farm in the sample expe-
rienced average annual growth in TC, indicating an 
adoption of input saving techniques (ODECK, 2009). 
This component also shows a low standard deviation 
(0.012), which suggests a homogenous average level 
of innovation. The increasing use of input-saving pre-
cision farming techniques is assessed in multiple stud-
ies. For instance, PAUSTIAN and THEUVSEN (2017) 
conducted a survey which showed that 69 % of Ger-
man large-scale arable farms (> 500 ha) from their 
sample are precision farming adopters. Their findings 
of a statistically significant effect of farm size on 
adoption of input-saving techniques are congruent to 
BARNES et al.’s (2019) cross regional study of EU 
farms.  

Table 6 shows period by period developments of 
mean MI, EC and TC over the observation interval for 
the original sample. Strong fluctuations are visible 
when comparing the four observed time periods. The 
first three time spans all show TFP growth, only the 
period from 2015/16 – 2016/17 shows deterioration in 
MI (5.1 %). In this period both components of the MI 
deteriorated as well. Possible explanations are the 

more disadvantaged weather conditions for German 
arable farms in 2016/17 as opposed to 2015/16 as well 
as the decline in agricultural commodity prices over 
said time period. Both occurrences lower the output 
variable of this study’s model and thus productivity if 
the amount of inputs is not reduced proportionally. In 
addition, bad weather conditions during the year of 
cultivation tend to lead to increased input costs (SMIT 
et al, 1996). The largest gain in TFP (16.0 %) is ob-
served between 2013/14 and 2014/15, despite a 1.9 % 
deterioration in EC. The large growth in TC (17.5 %) 
indicates a high adoption of input saving techniques in 
that time period for the farms in the original sample. 

Table 7 shows the mean 95 % confidence inter-
vals across DMUs and time periods which were de-
rived through bootstrapping according to SIMAR and 
WILSON (1999). If a bootstrapped confidence interval 
does not include the number one, the estimated MI 
statistically significantly differs from unity and there-
fore productivity growth (if smaller than 0) or deterio-
ration (if greater than 0) is indicated. The boot-
strapped confidence intervals of EC and TC are to be 
interpreted the same way regarding their respective 
development. The MI shows significant progress at 
the 5 % level as the confidence intervals range from 
0.914 to 0.981. This interval will, if repeated infini-

Table 6. Mean MI, EC & TC for original sam-
ple (CRS) (N=86) 

Time period Malmquist 
index (MI) 

mean 

Efficiency 
change (EC) 

mean 

Technical 
change (TC) 

mean 
2012/13–
2013/14 

0.992 1.020 0.972 

2013/14–
2014/15 

0.840 1.019 0.825 

2014/15–
2015/16 

0.913 0.989 0.923 

2015/16–
2016/17 

1.051 1.016 1.035 

Mean over  
the full period 

0.946 1.011 0.935 

Source: Author’s calculations 

Table 7. Mean 95 % confidence intervals for 
MI, EC and TC for bootstrap sample, 
2012/13 - 2016/17 (CRS) 

 Malmquist 
index (MI) 

Efficiency 
change (EC) 

Technical 
change (TC) 

Lower 
bound 

0.914 0.935 0.885 

Upper 
bound 

0.981 1.086 0.997 

Source: Author’s calculations 



GJAE 70 (2021), Number 1 

46 

tively, include the true value of TFP growth in any 
sample drawn from the statistical population for the 
assessed time period 95 % of the time. The confidence 
interval for the technical change component (0.885, 
0.997) does not contain unity either, so that statistical-
ly significant growth over the observed period can be 
concluded. In contrast, the confidence interval for EC 
(0.935, 1.086) includes unity. Therefore, on this basis 
it is not possible to conclude statistically significant 
whether there is growth or deterioration. This is not 
very surprising, since the mean EC for the original 
sample (1.011) ranges very close to unity. The boot-
strapped confidence intervals demonstrate once more 
why one has to be careful when solely considering 
results from the original sample. Bootstrapping allows 
for more robust conclusions and enables a higher de-
gree of generalization (ODECK, 2009). The results 
reveal a large amount of uncertainty regarding 
productivity change and its components in German 
large-scale arable farming. The indicated uncertainty 
is consistent with the finding of LATRUFFE et al. 
(2008) for Polish farms and underscores SIMAR and 
WILSON’s (1999: 471) concluding argument that “it is 
not enough to know whether the Malmquist index 
estimator indicates increases or decreases in produc-
tivity, but whether the indicated changes are signifi-
cant in a statistical sense; i.e., whether the result indi-
cates a real change in productivity, or is an artifact of 
sampling noise.” 

6 Concluding remarks 
This study aims to contribute to the existing research 
on efficiency and productivity measurements in the 
agricultural sector. Further insights into technical effi-
ciency and therefore a better understanding of the 
efficient utilization of limited inputs is needed if the 
agricultural sector’s output is to keep up with the in-
creasing global demand for food and raw materials. 
This study contributes to this understanding by first 
determining the degree of technical efficiency in 
German large-scale arable farming. Further, it evalu-
ates the magnitude of productivity change in German 
large-scale arable farming and discusses whether it is 
mainly due to changes in technical efficiency or 
changes in technology for a time period that has not 
been evaluated until now. In this context this study 
aims to provide statistical evidence regarding efficien-
cy and productivity measurements for German large-
scale arable farms and to illustrate the bootstrapping 

procedure of DEA and MI results in an agricultural 
application. 

The raised research questions are evaluated using 
a panel data set of input and output variables for 86 
German large-scale arable farms over a time period 
from 2012/2013 to 2016/2017. Year-by-year efficien-
cy scores are obtained by applying DEA. Afterwards 
the MI and its components are calculated in order to 
measure performance changes over time. Finally, 
bootstrapping as suggested by SIMAR and WILSON 
(1998, 1999) is applied to calculate confidence inter-
vals for the obtained efficiency and productivity 
scores. This enables more robust conclusions regard-
ing the statistical significance of the findings. 

The DEA results from the original sample show a 
mean input-savings potential of 9.2 % across farms 
and time periods. The fluctuations between the five 
assessed fiscal years are minimal with an overall posi-
tive trend. The results of the original efficiency scores 
indicate a high degree of homogeneity regarding tech-
nical efficiency in the sample, even though the farms’ 
input and output variables highly vary. The boot-
strapped confidence intervals suggest no statistically 
significant difference among the mean scores for indi-
vidual years, however significant differences exist be-
tween individual DMUs. The results of the MI analy-
sis from the original sample indicate a mean annual 
growth rate in TFP of 5.4 %. This progress was driven 
by growth in TC (6.5 %) and happened despite a small 
average deterioration in EC (1.1 %). The results fur-
ther suggest a homogenous average level of innova-
tion for the increasing adoption of input-saving tech-
niques. The progress in TFP and TC is statistically 
underpinned through the bootstrapped confidence 
intervals. The result of EC computed from the original 
sample cannot be confirmed statistically as the corre-
sponding confidence interval includes unity. The 
mean MI, EC and TC for individual time periods 
show large fluctuations between the four year-to-year 
time periods. The finding that original efficiency and 
productivity measures might indicate no statistically 
significant results is consistent with previous studies 
applying bootstrapping techniques. 

Considering the average German arable farm 
structure, it might be useful to repeat the analysis with 
smaller farms to obtain a representative sample. Fur-
ther limitations are price effects on the chosen output 
variable as well as the high degree of homogeneity 
among the evaluated farms. This paper’s results also 
provide starting points for further research. The de-
rived scores and developments of efficiency and 
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productivity in German large-scale arable farming 
could be complemented with an analysis of the factors 
that affect the scores. This could enable a better classi-
fication of the evaluated farms and help identify effi-
ciency and productivity drivers. Assessing the influ-
ence of price changes for monetary input and output 
variables, socio-demographic farm characteristics and 
especially the adoption of precision agriculture tech-
nology could add to a deeper understanding regarding 
efficiency and productivity change in German arable 
farming. 
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