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Abstract 

This article compares the use of risk-increasing and 

risk-reducing production inputs with the experimen-

tally measured risk attitudes of farmers. For this pur-

pose, a Just-Pope production function indicates pro-

duction inputs’ influence on output risk, and a Holt-

Laury lottery is used to measure farmers’ risk atti-

tudes. We then test whether more risk averse farmers 

use more risk-reducing and less risk-increasing pro-

duction inputs. To do so, a unique data set which in-

cludes 185 small-scale rubber farmers on the island of 

Sumatra, Indonesia, is used. The Just-Pope produc-

tion function suggests that higher fertiliser usage has 

a risk-reducing effect, whereas higher herbicide usage 

has a risk-increasing effect. Comparing this with the 

outcome of a Holt-Laury lottery, we found that more 

risk averse farmers use more fertiliser (risk-reducing) 

and less herbicides (risk-increasing). The consistency 

of these results can be interpreted as reinforcing the 

external validity of measuring risk attitude with a 

Holt-Laury lottery. 
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1 Introduction 

Yield fluctuations caused by extreme weather condi-

tions, diseases, or the adoption of new technologies 

have the potential to lead to dramatic changes in 

farmers’ income, thus making farming a risky busi-

ness (KEY and MACDONALD, 2006). Such output 

risks, in combination with the risk attitudes of farm-

ers, are among the main drivers for production deci-

sions in agriculture (CHAVAS et al., 2010). In this 

context, HELLERSTEIN et al. (2013) discuss the im-

portance of understanding the risk attitude/production 

decision relationship and how it helps with the devel-

opment of policies which can accommodate changing 

economic and environmental circumstances, as well 

as encouraging farmers to make appropriate reactions. 

However, the precise manner in which risk and risk 

attitude affect farmers’ production decisions is not 

easy to determine (JUST, 2001; JUST and POPE, 2003). 

Analysing output risk as well as risk attitude is a 

primary focus in the field of research that pertains to 

risk in agriculture (CHAVAS et al., 2010). An often 

applied and well-accepted method of investigating 

output risk, i.e. output variance, in agricultural pro-

duction, was developed by JUST and POPE (1978; 

1979).
1
 This method shows production inputs’ simul-

taneous influence on the output level and output vari-

ance. Several studies have applied and extended this 

approach for various contexts and purposes, thus 

proving its relevance (ANTLE and GOODGER, 1984; 

CHAVAS and HOLT, 1996; BAR-SHIRA et al., 1997; 

KUMBHAKAR, 2001; 2002a; 2002b; ABDULKADRI, 

2003; ISIK and KHANNA, 2003; KUMBHAKAR and 

TVETERÅS, 2003; BARRETT et al., 2004; DI FALCO 

and CHAVAS, 2009; GARDEBROEK et al., 2010; 

TIEDEMANN and LATACZ-LOHMANN, 2013). Experi-

ments have been a long-proven method for measuring 

risk attitude (BINSWANGER, 1980). Moreover, HOLT 

and LAURY (2002) developed a well-accepted exper-

imental method for measuring risk attitude, which is 

considered to be the “gold standard” of risk attitude 

measures (ANDERSON and MELLOR, 2008). IHLI and 

MUßHOFF (2013) further adapted this Holt-Laury 

(HL) risk attitude measure, to be applied to people 

with a limited level of formal education. By taking 

this adaptation into consideration this method can be 

applied for measuring risk attitudes in rural areas of 

developing countries. 

In the literature a discussion regarding the exter-

nal validity, sometimes referred to as generalisability 

(CAMERER, 2011), of experimentally obtained results 

to field behaviour, is in progress. We denote external 

validity of experimental results as understanding 

gained in the lab that “can be extrapolated to the 

world beyond“ (LEVITT and LIST, 2007: 153). Thus, 

field behaviour is defined as behaviour that occurs 

                                                           
1
  In this article, output variance and output risk will be 

used interchangeably. 
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outside of the laboratory. There are few investigations 

comparing field decisions regarding risk and experi-

mentally measured risk attitudes. HELLERSTEIN et al. 

(2013) predicts farming decisions related to either 

diversified operations or having crop insurance with a 

lottery-choice mechanism that measures farmers’ risk 

attitudes and found contradicting results between field 

and experimental decisions. Additional examples 

where lottery choices are used to predict decisions 

which include risk in agriculture production are crop 

diversification in Peru, where experimental results 

helped predict field behaviour (ENGLE-WARNICK et 

al., 2007); decisions regarding coffee production in 

Uganda, where the stated risk attitude explained pro-

duction decisions (VARGAS HILL, 2009); and adoption 

habits with regards to genetically modified crops in 

the USA, where BARHAM et al. (2014) distinguishes 

between ambiguity and risk aversion and results show 

only a minimal effect related to risk aversion. With 

respect to non-agricultural decisions ANDERSON and 

MELLOR (2009) found consistent relationships be-

tween experimentally measured risk attitudes and 

decisions regarding health and safety. However, for 

agricultural production it is noteworthy in the men-

tioned articles that predictive power is found in 

emerging economies (ENGLE-WARNICK et al., 2007; 

VARGAS HILL, 2009), while little or no predictive 

power is found in industrialised countries (BARHAM et 

al., 2014; HELLERSTEIN et al., 2013). It seems that 

currently no definite answer has been determined as to 

whether experimentally measured risk attitude is re-

flected in field behaviour. Further investigations are 

required in order to provide more examples which 

directly compare experimental results and field behav-

iour. 

Evaluating farmers’ production decisions is a 

good option for measuring farmers’ behaviour to-

wards output risks (JUST and POPE, 1978; 1979) 

which reflects greatly on farmers’ income. By com-

paring such field behaviour towards risk with an ex-

perimentally measured risk attitude, it can be deter-

mined if results found in the experiment have external 

validity to behaviour in the field. Experimentally 

measured risk attitude and production decisions to-

wards risk, evaluated with a Just-Pope (JP) production 

function, have not been compared thus far. This is 

especially relevant, since the output variance is a di-

rect measure of risk, whereas insurance plans or pro-

duction diversification are reactions to risk that are 

strongly influenced by individual preferences. Moreo-

ver, influencing the output risk through variations in 

input use, is a tool which practically every farmer can 

utilize. Thus, farmers can manage income risk, inde-

pendent of the availability of other tools such as in-

surance, production diversification or off-farm in-

come. 

On the islands of Sumatra and West Kalimantan, 

72% of the Indonesian rubber output is produced  

(ARIFIN, 2005). The Jambi province on Sumatra, spe-

cifically, is a region where rubber is a major crop tree 

and when combined with oil palm, generates the ma-

jority of farmers’ income. In this province, 52% of the 

workforce is employed in the agricultural sector, and 

approximately half of the cultivated land is used for 

rubber production, which is typically managed by 

small-scale farmers (STATISTICAL YEAR BOOK OF 

ESTATE CROPS, 2012). This shows the economic rele-

vance of rubber production for the region. Therefore, 

income risk caused through output risk in rubber pro-

duction, is a crucial concern in this region. 

The objective of this paper is to determine 

whether farmers’ production decisions towards risk 

are consistent with their risk attitude as measured in 

an experiment. We test this for the case of small-scale 

rubber farmers in the Jambi province on Sumatra, 

Indonesia. To determine farmers’ field behaviour to-

wards risk, a JP production function is used to esti-

mate production inputs’ influence on output variance 

(JUST and POPE, 1978; 1979). Thus, the first hypothe-

sis is “H1: The intensity of used production inputs has 

an influence on output variance”. To measure farm-

ers’ risk attitude, we apply an incentivised HL lottery 

(HOLT and LAURY, 2002) within an extra-laboratory 

experiment. According to CHARNESS et al. (2013: 93), 

such experiments “have the same spirit as laboratory 

experiments, but are conducted in a non-standard 

manner”. By combining the results of the JP produc-

tion function and the HL lottery, we can answer the 

second hypothesis, “H2: More risk-averse farmers use 

more risk-reducing and less risk-increasing inputs”. 

The present research contributes to the existing 

literature in several ways. First, it adds to the discus-

sion regarding the external validity of experimental 

results to field behaviour (LEVITT and LIST, 2007; 

ROE and JUST, 2009; CAMERER, 2011). We are the 

first that compare production decisions that are evalu-

ated with a JP production function and risk attitude 

measured using an incentivised HL lottery. Second, 

agricultural production is focused on rubber and oil 

palm cultivation within the research area. It is known 

that output risk in rubber production may potentially 

cause high income risks for farmers; furthermore, little 
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is presently known regarding the risk-influencing 

effects of production inputs in rubber production. 

Moreover, it is important to determine the best way to 

manage risk in rubber production, as it could raise its 

attractiveness in comparison to the less environmental 

friendly oil palm production (see e.g., KOH and WIL-

COVE, 2008; LAUMONIER et al., 2010; WILCOVE and 

KOH, 2010). Thus, a deeper understanding of methods 

of influencing output risk in rubber production is rele-

vant for farmers, as well as for the general population 

in the Jambi province. 

The remainder of the paper is organised as fol-

lows: the methodology is explained in Section 2. Sec-

tion 3 gives a description of the sample selection and 

the data, while Section 4 presents and discusses the 

results. Section 5 concludes. 

2 Methods 

To answer the hypotheses of this paper, we proceed as 

follows: In Section 2.1, we explain how we apply a JP 

production function to estimate the inputs’ influence 

on output variance. In Section 2.2, we explain how we 

test whether inputs over- or underuses
2
 are correlated 

with farmers’ risk attitude as measured with a HL 

lottery. Based on that, we evaluate if more risk averse 

farmers use more risk-reducing and less risk-

increasing production inputs. 

2.1  Procedure for Estimating Inputs’  
Influence on Output Variance 

With the JP production function (JUST and POPE, 

1978; 1979) we want to determine the production 

inputs’ influence on the output variance. The model 

used to determine this is: 

𝑞𝑝𝑣(𝑥𝑘𝑝𝑣, 𝜀𝑝𝑣) = 𝑓(𝑥𝑘𝑝𝑣) + 𝜀𝑝𝑣√ℎ(𝑥𝑘𝑝𝑣) (1) 

where 𝑞𝑝𝑣 represents the production output from plot 

𝑝 in village 𝑣 and 𝑥𝑘𝑝𝑣 represents the input 𝑘 of plot 𝑝 

in village 𝑣. Additionally, 𝑓(𝑥𝑘𝑝𝑣) is the function 

which determines the output level, whereas the func-

tion √ℎ(𝑥𝑘𝑝𝑣) determines the inputs’ influence on 

output variance, both influenced by the input variables 

𝑥𝑘𝑝𝑣. Moreover, 𝜀𝑝𝑣 is a stochastic disturbance with 

                                                           
2
  In comparison to the perfect rational, expected profit 

maximising input use. 

an expected value of zero, along with a positive and 

constant variance. 

The estimation strategy used in this study is 

based on GARDEBROEK et al. (2010). Thus, we define 

that with 𝜀𝑝𝑣√ℎ(𝑥𝑘𝑝𝑣) = 𝑢𝑝𝑣. By doing so, Equa-

tion (1) can be rewritten as 𝑞𝑝𝑣(𝑥𝑘𝑝𝑣) = 𝑓(𝑥𝑘𝑝𝑣) +

𝑢𝑝𝑣, with 𝑢𝑝𝑣 as a residual. This modification makes 

the function for the output level 𝑓(𝑥𝑘𝑝𝑣) feasible. We 

apply a quadratic specification including village spe-

cific effects which allows for using zero-value input 

observations. Consequently, the function which de-

termines the output level 𝑞𝑝𝑣(𝑥𝑘𝑝𝑣) = 𝑓(𝑥𝑘𝑝𝑣) + 𝑢𝑝𝑣 

is specified by: 

𝑞𝑝𝑣 = 𝛼0 + 𝛼𝑣 + ∑ 𝛼𝑘
𝐾
𝑘=1 𝑥𝑘𝑝𝑣 +

1

2
∑ ∑ 𝛼𝑘𝑗𝑥𝑘𝑝𝑣𝑥𝑗𝑝𝑣

𝐾
𝑗=1

𝐾
𝑘=1 + 𝑢𝑝𝑣  

(2) 

The village specific effects on output level, e.g. 

through different soil or weather conditions, are cap-

tured by 𝛼𝑣. Moreover, 𝛼𝑘 and 𝛼𝑘𝑗 show the inputs’ 

influence on output level. 𝐾 equals the number of 

applied input variables and 𝛼0 is the intercept. With a 

translog specification, we can estimate inputs’ influ-

ence on output variance. This translog variance func-

tion is given by: 

𝑙𝑛|𝑢𝑝𝑣| = 𝛽0 +
1

2
(𝛽𝑣 + ∑ 𝛽𝑘𝑙𝑛(𝑥𝑘𝑝𝑣) +𝐾

𝑘=1

1

2
∑ ∑ 𝛽𝑘𝑗𝑙𝑛(𝑥𝑘𝑝𝑣)𝑙𝑛(𝑥𝑗𝑝𝑣)𝐾

𝑗=1
𝐾
𝑘=1 +

∑ 𝛽𝑚𝐷𝑚
𝑀
𝑚=1 ) + 𝑤𝑝𝑣  

(3) 

In Equation (3) the dependent variable 𝑙𝑛|𝑢𝑝𝑣| is de-

rived from the logarithmic absolute value of the resid-

ual from Equation (2). 𝛽𝑣 covers village specific fixed 

effects of production variance. Moreover, since all 

values are taken in their natural logarithm 𝑙𝑛, the coef-

ficients 𝛽𝑘 and 𝛽𝑘𝑗 reflect the elasticities of the output 

variance for the specific input variable, i.e. the inputs’ 

influence on output variance. Furthermore, we have 

zero-value observations for some of the input varia-

bles; thus, 𝑀 signifies the number of correction dum-

mies which are necessary to estimate unbiased coeffi-

cients for such inputs. These dummies contain a value 

of one for each zero-value observation of the respec-

tive input variable. This approach is favourable when 

the share of zero-value observations is significant 

(BATTESE, 1997). Other researchers have applied 

similar dummy variable techniques when using JP 

production functions with a considerable proportion of 

zero-value observations for fertiliser or manure (DI 

FALCO and CHAVAS, 2009; 2012; VILLANO and 
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FLEMING, 2006), or solving such problems implicitly 

(KATO et al., 2011; HOLST, 2013). Additionally, this 

approach is broadly used within (RAO et al., 2012; 

BATTESE et al., 1996) or outside (SCHNEIDER, 2005; 

DEININGER and JIN, 2008; KEIL et al., 2008; IRAIZOZ 

et al., 2005) the field of agricultural economics. 𝛽0 is 

the intercept and 𝑤𝑝𝑣 is the error term. For more in-

depth details concerning Equation (3) or the JP pro-

duction function, please refer to the relevant literature 

(JUST and POPE, 1978; 1979; GARDEBROEK et al., 

2010). 

For this analysis, we are interested in the margin-

al influence on variance that is created by each input. 

In a translog specification, an input’s marginal effect 

on variance is calculated as follows (PAVELESCU, 

2011): 

𝛿𝑙𝑛|𝑢𝑝𝑣|

𝛿𝑥𝑘𝑝𝑣
= 𝛽𝑘 + 2𝛽𝑘𝑘𝑙𝑛(𝑥𝑘𝑝𝑣) +

∑ 𝛽𝑘𝑗 ln(𝑥𝑗𝑝𝑣)𝐾
𝑗=1≠𝑘     

𝑘 = 1, … , 𝐾       

(4) 

Equation (4) shows the partial derivative of the output 

variance of an input 𝑘. 𝛽𝑘, 𝛽𝑘𝑘 and 𝛽𝑘𝑗 are coeffi-

cients from Equation (3). With Equation (4), we can 

calculate whether an input is increasing or reducing 

the output variance for each observation. 

2.2  Procedure for Estimating the  
Correlation of Experimentally  
Measured Risk Attitude on Over-  
or Underuse of Inputs 

To measure farmers’ risk attitude, a HL lottery is con-

ducted (HOLT and LAURY, 2002). The HL lottery, 

shown in Table 1, is comprised of ten paired lottery-

choice decisions between option A and option B. Each 

option has two possible payouts for which the proba-

bilities are systematically changed. Option A has a 

moderate payout-spread and is therefore the “safe 

choice”, whereas option B has a high payout-spread 

making it the “risky choice”. Ex post, one pair is ran-

domly chosen and paid out to the participants. The 

lottery was adapted to take into consideration that at 

least some of the people in the rural areas of Sumatra 

have a limited level of formal education or may even 

be illiterate. Therefore, the experiment was designed 

by visualising probabilities with differently coloured 

balls instead of complicated numerical probabilities, 

which makes the experiment easily understandable for 

all participants (IHLI and MUßHOFF, 2013). The ap-

plied design is depicted in the appendix (Figure A1). 

Table 1 shows that as the probability for higher 

outcomes in the HL lottery increases, the expected 

payoff difference between option A and option B  

decreases; beginning with the 5
th
 pair of choices, the  

  

Table 1.  Payoffs in the HL lottery 

Choice Option A Option B Difference in the expected payoff 

1 With 10% prize of Rp 4,000 

With 90% prize of Rp 3,200 

With 10% prize of Rp 7,600 

With 90% prize of Rp 200 

Rp  2,340 

2 With 20% prize of Rp 4,000 

With 80% prize of Rp 3,200 

With 20% prize of Rp 7,600 

With 80% prize of Rp 200 

Rp  1,680 

3 With 30% prize of Rp 4,000 

With 70% prize of Rp 3,200 

With 30% prize of Rp 7,600 

With 70% prize of Rp 200 

Rp  1,020 

4 With 40% prize of Rp 4,000 

With 60% prize of Rp 3,200 

With 40% prize of Rp 7,600 

With 60% prize of Rp 200 

Rp     360 

5 With 50% prize of Rp 4,000 

With 50% prize of Rp 3,200 

With 50% prize of Rp 7,600 

With 50% prize of Rp 200 

Rp    -300 

6 With 60% prize of Rp 4,000 

With 40% prize of Rp 3,200 

With 60% prize of Rp 7,600 

With 40% prize of Rp 200 

Rp    -960 

7 With 70% prize of Rp 4,000 

With 30% prize of Rp 3,200 

With 70% prize of Rp 7,600 

With 30% prize of Rp 200 

Rp -1,620 

8 With 80% prize of Rp 4,000 

With 20% prize of Rp 3,200 

With 80% prize of Rp 7,600 

With 20% prize of Rp 200 

Rp -2,280 

9 With 90% prize of Rp 4,000 

With 10% prize of Rp 3,200 

With 90% prize of Rp 7,600 

With 10% prize of Rp 200 

Rp -2,940 

10 With 100% prize of Rp 4,000 

With 0% prize of Rp 3,200 

With 100% prize of Rp 7,600 

With 0% prize of Rp 200 

Rp -3,600 

Note: Rp = Indonesian rupiah 

Source: HOLT and LAURY (2002) 
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expected outcome differences become negative. 

Therefore, a perfect rational, profit maximising partic-

ipant would switch from option A to option B with the 

5
th
 choice. Only a strongly risk seeking participant 

would choose option B for the first choices, whereas 

only a strongly risk averse participant would choose 

option A for the final choices. Additionally, option B 

is the only rational choice for the 10
th
 pair, thus this 

choice can be seen as a plausibility test. 

Consistent behaviour would be established if the 

participant switches one time from option A to option 

B or would never switch from option B to option A as 

they progress through the HL lottery. The number of 

option A choices, i.e. the safe choices, would then be 

the relevant value which indicates the risk attitude. 

Unfortunately, consistent behaviour is not always ob-

served in the HL lottery (HOLT and LAURY, 2002). In 

the literature, several methods have been established 

for managing inconsistent behaviour in the HL lottery. 

The first method as discussed by HOLT and LAURY 

(2002) is to consider only observations with consistent 

behaviour for the analysis. The number of safe choices 

present among the consistent observations is then the 

respective measure, we will call this measure “HL-

consistent”. This measure has the disadvantage of los-

ing observations which display inconsistent behaviour. 

Alternatively, HOLT and LAURY (2002) suggest using 

the total number of safe choices as a risk attitude 

measure, independent of whether the choices are con-

sistent, this measure will be called “HL-total”. Another 

method, which is also discussed in the literature, is to 

consider the observation at the first switching point 

from option A to option B, independent of whether the 

choices beyond this point are consistent (MASCLET et 

al., 2009), this measure will be termed “HL-change”. 

With all three of the HL-measures presented here, a 

higher value will be interpreted as more a risk averse 

attitude. However, as shown in HOLT and LAURY’S 

article (2002), the payment amount influences the de-

gree of risk aversion in such a lottery. Therefore, the 

measured risk aversion is considered to be relative, i.e. 

relevant for comparing participants with one another, 

while not being seen as a measurement for absolute 

risk aversion. For robustness purposes, we will apply 

all three mentioned HL-measures for this analysis.  

In order to assess the over- or underuse of a cer-

tain input, we deduct the expected profit maximising 

input use 𝑥𝑘𝑝𝑣
∗  from the real input use 𝑥𝑘𝑝𝑣. To calcu-

late the expected profit maximising input use 𝑥𝑘𝑝𝑣
∗ , we 

begin with the expected profit calculation on plot level, 

which is denoted as follows: 

𝜋𝑝𝑣 = 𝑞(𝑥𝑘𝑝𝑣
∗ )𝑝𝑝𝑣 − ∑ 𝑥𝑘𝑝𝑣

∗ 𝑤𝑘𝑝𝑣
𝐾
𝑘=1   (5) 

In Equation (5) the expected profit for each plot 𝜋𝑝𝑣 is 

calculated by multiplying the output 𝑞(𝑥𝑘𝑝𝑣
∗ ) by the 

product price 𝑝𝑝𝑣 and deducting the input 𝑥𝑘𝑝𝑣
∗  multi-

plied by an input price of 𝑤𝑘𝑝𝑣 to account for the in-

put costs. By taking the derivative of this equation 

with respect to 𝑥𝑘𝑝𝑣
∗ , we get the expected marginal 

value product, which equals to the input price: 

0 =
𝜕𝑞(𝑥𝑘𝑝𝑣

∗ ) 

𝜕𝑥𝑘𝑝𝑣
∗ 𝑝𝑝𝑣 −

𝜕 ∑ 𝑥𝑘𝑝𝑣
∗𝐾

𝑘=1

𝜕𝑥𝑘𝑝𝑣
∗ 𝑤𝑘𝑝𝑣                 

 𝑘 = 1, … , 𝐾       

(6) 

The derivation on the right side of the minus sign 

equals one. Thus, restructuring and inserting the pro-

duction function as shown in Equation (2) yields: 

𝑤𝑘𝑝𝑣

𝑝𝑝𝑣
= 

 
𝜕(𝛼0+𝛼𝑣+∑ 𝛼𝑘𝑥𝑘𝑝𝑣

∗ +∑ ∑ 𝛼𝑘𝑗𝑥𝑘𝑝𝑣
∗ 𝑥𝑗𝑝𝑣+𝑢𝑝𝑣

𝐾
𝑗=1

𝐾
𝑘=1

𝐾
𝑘=1 )

𝜕𝑥𝑘𝑝𝑣
∗   

𝑘 = 1, … , 𝐾     

(7) 

Through the derivation and restructuring of Equation 

(7) we determine the calculation for the perfect ration-

al, expected profit maximising input use 𝑥𝑘𝑝𝑣
∗ . 

 𝑥𝑘𝑝𝑣
∗ =

𝑤𝑘𝑝𝑣

𝑝𝑝𝑣
−𝛼𝑘−∑ 𝛼𝑘𝑗𝑥𝑗𝑝𝑣

𝐾
𝑗=1≠𝑘

2𝛼𝑘𝑘
   

𝑘 = 1, … , 𝐾       

(8) 

Apparently, we cannot know the optimal input use for 

𝑥𝑗𝑝𝑣 before calculating 𝑥𝑘𝑝𝑣
∗  for any given input. 

Thus, Equation (8) reveals only a conditional optimi-

sation given the input levels and is, therefore, an ap-

proximation of the ‘true’ optimal input use. By apply-

ing the coefficients of the function that determines the 

output level, i.e. Equation (2), we can calculate the 

values for 𝑥𝑘𝑝𝑣
∗  for each input and observation. The 

difference between the real input use 𝑥𝑘𝑝𝑣 and the 

expected profit maximising input use 𝑥𝑘𝑝𝑣
∗  is shown 

by 𝑥𝑘𝑝𝑣
∆ : 

𝑥𝑘𝑝𝑣
∆ = 𝑥𝑘𝑝𝑣 − 𝑥𝑘𝑝𝑣

∗   (9) 

Thus, a positive or negative 𝑥𝑘𝑝𝑣
∆  identifies the over- 

or underuse of a certain input, respectively. In the case 

that an inputs’ observed value is zero, it is left out of 

further analysis. With the values of 𝑥𝑘𝑝𝑣
∆  at hand, it is 

possible to test whether inputs over- or underuse cor-
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relates with producers’ risk-aversion 𝐻𝐿𝑖, with sub-

script i indicating each farmer, as follows: 

𝑥𝑘𝑝𝑣
∆ = 𝛾0 + 𝛾1𝐻𝐿𝑖 + 𝛾2(𝐻𝐿𝑖)² + 𝑧𝑘𝑝𝑣  (10) 

𝐻𝐿𝑖 is measured on an arbitrary scale from 0 to 10. 

Since this is experimental data, the form of the rela-

tionship with non-experimental data, i.e. the produc-

tion decisions, cannot be foreseen. Thus, we test both 

a linear and a quadratic functional form. The latter is 

illustrated in Equation (10). 𝛾1 and 𝛾2 show the influ-

ence of the linear and the squared HL-measures on 

inputs’ over- or underuse. 𝛾0 and 𝑧𝑘𝑝𝑣 are the inter-

cept and the residual, respectively. For robustness 

purposes, all three discussed HL-measures for risk 

attitude, i.e. HL-consistent, HL-total and HL-change, 

are used as independent variables for a single variable 

quadratic function with 𝑥𝑘𝑝𝑣
∆  as the dependent varia-

ble. Therefore, we have three independent regressions 

for each input variable. By taking the derivative of 

Equation (10), we can calculate the marginal effect of 

the HL-measures on input use: 

𝜕𝑥𝑘𝑝𝑣
∆  

𝜕𝐻𝐿𝑖
= 𝛾1 + 2𝛾2𝐻𝐿𝑖  (11) 

Equation (11) determines the marginal effects of the 

respective HL-measure on input use. Therefore, it is 

determined whether the input use is correlated with the 

HL-measures. Combined with the results from the JP 

production function, as described in Section 2.1, we can 

demonstrate if more risk-averse farmers use more risk-

reducing and less risk-increasing production inputs. 

3 Sample Selection and Data 

The data was collected in the Jambi Province on Su-

matra, Indonesia. Jambi has approximately three mil-

lion inhabitants and has an area of roughly 50,000 

square kilometres. The research area extends over five 

regencies of the Jambi Province: Sarolangun, Tebo, 

Bungo, Batang Hari and Muaro Jambi. Next to oil 

palm, rubber is a major tree crop in this area (OTSUKA 

et al., 2000; STATISTICAL YEAR BOOK OF ESTATE 

CROPS, 2012) and has a long tradition. 

The main task in cultivating rubber is tapping, i.e. 

harvesting. During that process a thin layer of bark is 

cut with a special knife, so the rubber can drop into a 

small cup. Simultaneously, the rubber from the previ-

ous tapping is collected. This is done twice a week 

with each rubber tree. Another major task is weed 

control which is done with herbicides or by mowing. 

The primary function of herbicide use is to reduce 

work effort rather than for regulating yield security. 

Occasionally farmers use fertiliser whereas pesticides 

are only used as an exception. No heavy machinery is 

needed for these tasks or other work processes, mak-

ing rubber crop a labour-intensive crop. 

The data was collected from October to Decem-

ber 2012 in 35 randomly chosen villages. Depending 

on the size of each village, between 10 and 24 ran-

domly chosen farmers were invited to participate in 

this research. The production data for those farmers 

was collected a few days in advance by other re-

searchers (DRESCHER et al., 2016; EULER et al., 

2016), whereas the socioeconomic data was collected 

the same day by another research group (GATTO et al., 

2015). Since not all farmers showed up for the exper-

iments and not all farmers cultivate rubber, the final 

data set consists of 185 farmers which cultivate a 

combined total of 260 rubber plots. Due to time con-

straints, it was not possible to replace farmers who did 

not show up for the experiments on short notice. In 

the used data set, a farmer may hold several rubber 

plots, these plots, however, are always within one 

village. The experiments took place, depending on 

local conditions, in the early afternoon or after even-

ing prayer. The experiments were conducted in avail-

able public spaces such as schools, gymnasiums or the 

house of the village head. 

Before the experiment began, participants were 

required to sit separately from one another and were 

not allowed to speak, except with the enumerators. 

Each participant then received a questionnaire to fill-

in with their experimental decision and an enumerator 

explained the instructions with the support of visual 

aids. Posters, similar to Figure A1. in the appendix, 

were used to illustrate the lottery to the farmers. It was 

explained that there would be a shopping voucher as a 

prize and that the amount depends on the farmers' 

behaviour. We explained that the lottery consists of 10 

choice-pairs and that they would have to choose one 

bag for each of them. Furthermore, we told them ex-

plicitly to choose very carefully, since they are only 

allowed to draw one ball from the bag from a random-

ly chosen choice-pair. 

In order to account for learning effects, the HL lot-

tery was conducted twice. For the analysis, only the 

results of the second HL lottery were used. To avoid a 

consecutive execution of these HL lotteries, other ex-

periments were included as an interruption. These ex-

periments tested for trust between the participants, or 

dealt with ex ante testing of policy measures, and had 
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no direct connection to the HL lottery. To avoid dis-

torting influences from the first HL lottery, and the 

other experiments on the second HL lottery, all earn-

ings were evaluated after the decisions had been made.
3
 

Most participants won between Rp 40,000 and Rp 

60,000 for their participation in all experiments, which 

were then distributed in the form of a shopping voucher 

for a local shop. The two HL lotteries account for an 

average of Rp 8,336. Considering that the average daily 

wage for a worker is around Rp 50,000 in the research 

area, the amount given in vouchers seems to be ade-

quate compensation for participation in these experi-

ments. The lotteries took approximately half an hour, 

whereas the other experiments took around three hours. 

It is evident that some farmers in the observation 

have more than one plot. Thus, it is difficult to inter-

pret a farmers' behaviour when he has several plots, 

but treats them differently. This is relevant for 54 of 

the farmers, who are cultivating 129 plots. In the da-

taset, 37 plots are from farmers who use fertiliser for 

more than one plot. By taking a closer look, we find 

only four cases where the difference in fertiliser use 

per hectare between such plots at farm-level, is more 

than 10%, whereas these differences on village level 

vary more substantially. For herbicides, of the 61 plots 

from farmers, who use herbicides on more than one 

plot, only 4 plots deviate from the farm average at 

more than 10%, whereas the differences within the 

farms of the same village are enormous. For labour 

use, only for 8 out of the 129 plots from farmers with 

more than one plot, the difference is higher than 30%. 

This relatively bigger difference, compared to fertilis-

er and herbicides, might be reasoned through individ-

ual plot characteristics, i.e. distance to home or differ-

ent techniques to control for weeds. Again, the differ-

ences between farms in the same village are bigger. 

To sum it up, on-farm use of fertiliser, herbicides or 

labour are similar on farm-level, whereas there is a 

significant heterogeneity between farms, even within a 

village. Different input choices on neighbouring plots, 

might depend on different preferences of the farmers. 

However, since farmers have their plots in differ- 

ent parts around their village, similar on-farm input 

choices might indicate that unobserved heterogeneity 

on village level is rather small. This structure in the 

data seems to be favourable for the analysis at hand. 

The relatively high share of inconsistent observa-

tions in the HL lottery is not desirable and the source 

                                                           
3
  For each of the three HL-measures, the differences 

between the first and the second lotteries are not signifi-

cant at the 5% level. 

of this behaviour is unclear. As IHLI and MUßHOFF 

(2013) discuss, it might be a lack of understanding, 

whereas HARRISON et al. (2005) argues such behav-

iour is the result of being indifferent between the op-

tions. However, as discussed in Section 2.2, by includ-

ing various HL-measures, i.e. HL-value, HL-consistent 

and HL-change, we account for this problem. 

Table 2 shows the socioeconomic, experimental 

and production data of the relevant farmers and plots. 

For this analysis, we apply five production inputs, i.e. 

fertiliser, herbicides, labour, plot size and plantation 

age, which we consider to be the most important in-

puts. For fertiliser and herbicides, the high standard 

deviation in relation to mean values can be explained 

through the high share of zero-value observations. The 

labour use per year was estimated by the farmers ac-

cording to their different tasks on the plot. 

4 Results 

In Section 4.1, we show the estimated influence from 

production inputs on output variance, i.e. output risk. 

Thus, we can respond to the first hypothesis. Section 

4.2 shows the correlation between the experimentally 

measured risk attitude and the input use. In combina-

tion with the results from Section 4.1, the second hy-

pothesis is answered. 

Table 2.  Socioeconomic, experimental and  

production data 

 

Mean 

Standard 

deviation
 

Observations rubber farmers 185  

Male, percent 83.61 

 Age, years 44.03 10.49 

Education, years 7.67 3.12 

Household size, persons 4.50 1.42 

HL-consistent
a)

 3.85 2.95 

HL-total 4.39 2.42 

HL-change 2.46 2.58 

Observations rubber plots 260  

Yield, kg
 

3,167 3,441 

Fertiliser, kg
b) 

78.2 224.8 

Herbicides, litre
 b)

 5.45 9.79 

Labour, hours/year 964 612 

Plot size, hectare 2.07 1.84 

Plantation age, years 19.30 9.14 

Note: a) 137 observations have consistent results for the HL lot-

tery. b) Fertiliser and herbicides have 192 and 138 zero-value ob-

servation, respectively. 

Source: own presentation including data from DRESCHER et al. 

(2016), EULER et al. (2016), GATTO et al. (2015) 
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4.1  Estimated Inputs’ Influence on  
Output Variance 

Following the estimation strategy described in Section 

2.1, the JP production function starts with estimating 

inputs’ influence on output level with the quadratic 

production function described in Equation (2). There-

fore, we account for five production inputs, i.e. fertilis-

er, herbicides, labour, plot size and plantation age. We 

assume that output variance is related to the amount of 

input use, which implies heteroskedasticity. There-

fore, we apply White’s procedure in order to obtain 

heteroskedastic robust standard errors (WOOLDRIDGE, 

2002). The results of this estimation can be seen in 

Table A1 in the appendix. Five out of the twenty es-

timated coefficients are significantly different from 

zero at the 5% level. However, it is evident that nei-

ther labour, nor plot size, contribute any significant 

coefficients to output level. To investigate this, we 

tested with a likelihood-ratio test for both 

of these inputs, whether an estimation 

without either labour or plot size (includ-

ing the respective interaction effect) nests 

the estimation shown in Table A1. We 

found that both of these inputs signifi-

cantly contribute to the explanatory power 

of the estimation shown in Table A1. 

Additionally, an F-test strongly indicates 

the existence of unobserved, constant 

effects on village level. However, even 

though none of the first-order parameters 

are significant, the adjusted R-square of 

0.617 indicates a high degree of explana-

tory power of the estimated production 

function. Therefore, we are confident that 

our data base is sufficient for a well-

estimated production function. 

To estimate each input’s influence on 

output variance, we apply the translog 

variance function shown in Equation (3). 

By including fixed effects, we account for 

variance effects on village level. Addi-

tionally, we introduced three correction 

dummies: one for fertiliser, one for herbi-

cides and due to the possible interaction 

of effects between fertiliser and herbicide 

usage, one for observations with non-zero 

values of fertiliser and herbicides. This 

method allows us to estimate unbiased 

elasticities in the presence of variables 

including zero-value observations. The 

correction dummies are not interpreted 

(BATTESE, 1997). As demanded by the model, all 

variables are applied in logarithmic values (JUST and 

POPE, 1978; 1979), including also non-decision varia-

bles like plantation age or plot size, as done by other 

researchers (GARDEBROEK et al., 2010). The estima-

tion results of Equation (3) can be seen in Table 3. 

In the translog specification of Table 3 it can be 

seen that from the 20 variables which are not correc-

tion dummies, three are significantly different from 

zero at the 5% level. This low share of significant 

coefficients for such regressions can also be found in 

other studies, e.g., 4 out of 35 in GARDEBROEK et al. 

(2010). However, the adjusted R-square of 0.623 indi-

cates a high explanatory power of the output variance 

with the used inputs. An F-test indicates the effects of 

an unobserved village constant on the output variance. 

By investigating village level effects we found that 

approximately 10.8% of the variation between villages 

Table 3.  Elasticities of input use on output variance,  

translog specification 

  Mean 

Standard 

Error
a) 

p-value 

Fertiliser 0.636 2.223 0.775 

Herbicides -1.073 1.759 0.542 

Labour 1.449 4.464 0.746 

Plot size 5.902 3.676 0.110 

Plantation age -0.635 6.362 0.921 

Fertiliser x fertiliser -0.021 0.095 0.827 

Fertiliser x herbicides -0.006 0.018 0.725 

Fertiliser x labour -0.045 0.037 0.219 

Fertiliser x plot size 0.037 0.032 0.247 

Fertiliser x plantation age 0.002 0.030 0.933 

Herbicides x herbicides 0.016 0.097 0.872 

Herbicides x labour 0.132 0.038 0.001*** 

Herbicides x plot size -0.103 0.036 0.004*** 

Herbicides x plantation age -0.012 0.038 0.747 

Labour x labour -0.168 0.164 0.308 

Labour x plot size -0.052 0.268 0.846 

Labour x plantation age 0.298 0.289 0.304 

Plot size x plot size 0.143 0.141 0.309 

Plot size x plantation age -0.672 0.261 0.011** 

Plantation age x plantation age 0.083 0.261 0.750 

Dummy fertiliser 0.396 13.275 0.976 

Dummy herbicides -0.566 8.024 0.944 

Dummy fertiliser x  

dummy herbicides 0.281 1.974 0.887 

Constant -21.38 44.97 0.635 

Observations 260   

Adjusted R-square 0.623    

Note: significantly different from zero at the *10%, **5% and ***1% levels 

Source: own presentation 
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can be explained with regional variables. Thus, the 

output variance differs between regions from high to 

low in the following order: the south-western region 

of Sarolangun, the north-western Tebo and Bungo 

regions, the central region of Batang Hari, and the 

eastern region of Muara Jambi. It can thus be deter-

mined that regional differences exist with respect to 

the output risk in rubber production. 

Since each input appear multiple times in the 

translog specification indicated in Table 3, i.e. directly 

and through interaction effects, it is not possible to 

identify the influence of inputs on output risk directly. 

Thus, for convenience purposes, we estimate the vari-

ance function in the Cobb-Douglas specification,  

i.e. without interaction effects. The results are shown 

in Table A2 in the appendix. The coefficients of  

this estimation indicate already the general influence 

of inputs on output variance: plot size is clearly  

risk-increasing, whereas fertiliser, with a p-value close 

to the critical level of 10%, is indicated to be risk-

reducing. No significant parameters were found  

for the other inputs. However, since a likelihood-ratio 

test notably shows that the Cobb-Douglas speci-

fication does not nest the translog specification, fur-

ther analysis considers only the later named specifica-

tion. 

With respect to the first hypothesis, “H1: The in-

tensity of used production inputs has an influence on 

output variance”, Table 3 shows that three out of 20 

combinations of inputs have a significant influence on 

output risk. Therefore, we cautiously support the first 

hypothesis, since at least some interaction effects have 

an influence on output risk. 

To determine the inputs’ influence on output var-

iance, we apply Equation (4) with the parameters of 

the translog specification from Table 3. For fertiliser 

and herbicides, it is reasonable to consider only ob-

servations with non-zero values. For the purpose of 

this article, we are primarily interested in the direction 

and not in the size of an inputs’ influence on output 

variance. To find such direction, we compare the 

number of variance-increasing and variance-reducing 

observations for each input. It is difficult, however, to 

determine at which proportion of variance-increasing 

and variance-reducing observations, an input’s influ-

ence on output variance is distinct. In order to deter-

mine the direction of inputs’ influence on output vari-

ance, we determined that having more than 75% of the 

observations point in the same direction is sufficient. 

In the literature for Equation (4), mean values are 

often used to calculate inputs' marginal influence on 

output risk (e.g. see ASCHE and TVETERÅS, 1999) or 

output height (GARDEBROEK et al., 2010). However, 

since we are interested in the direction exclusively, 

and not in the size of the effect, we wanted to take a 

closer look. Therefore, we used a method that calcu-

lates the effect for each single observation.  

Table 4 shows the influence of each input on out-

put variance per observation. For all 68 non-zero ob-

servations of fertiliser usage, the marginal effect is 

variance-reducing. This finding is already indicated 

with a p-value of 10.1%, according to the Cobb-

Douglas specification of Table A2 in the appendix. 

Moreover, the marginal effect of herbicide usage is 

variance-increasing for a clear majority (93%) of the 

non-zero-value observations. In rubber production, 

herbicides are used to reduce work effort for weed 

control, rather than for yield security. Additionally, 

PANNELL (1991) mentions that even pesticides can be 

a risk increasing production input. Thus, this result for 

herbicides seems reasonable. Here, we determine a 

divergence from the Cobb-Douglas specification of 

Table A2, where no significant influence is found. 

This might be due to the missing significant interac-

tion effects of labour and plot size. For plot size, we 

found a variance-increasing effect for 76% of the ob-

servations. Therefore, we carefully consider this pro-

duction input to be variance-increasing, which is also 

found in the Cobb-Douglas specification of Table 2A. 

We have no clear explanation for this effect, but it 

may be reasoned that bigger plots are more difficult to 

manage or suffer a higher weed infestation. However, 

the observations of variance-increasing and variance-

reducing marginal effects for labour and plantation age 

Table 4.  Marginal effects of inputs on output variance 

Input 

Non-zero  

observations 

Variance-increasing 

observations 

Variance-reducing 

observations 

Inputs' influence  

on variance 

Fertiliser 68 0 (0%) 68 (100%) Variance-reducing 

Herbicides 122 114 (93%) 8 (7%) Variance-increasing 

Labour 260 106 (41%) 154 (59%) Ambiguous 

Plot size 260 197 (76%) 63 (24%) Variance-increasing 

Plantation age 260 145 (56%) 115 (44%) Ambiguous 

Source: own presentation 
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are almost equal, making the influence on output vari-

ance ambiguous. Thus, we leave this input out for 

further analysis. Since our measure for output risk is 

output variance, fertiliser is considered as risk-

reducing, whereas herbicides and plot size are both 

risk-increasing production inputs. 

4.2  Correlation of Experimentally  
Measured Risk Attitude on Input Use 

To get a rough insight, we first use a left-censored 

tobit regression to test for a linear relationship be-

tween input density, i.e. the amount of input used per 

hectare, and the three described HL-measures. In a 

separate regression, we tested with a dummy if farm-

ers with a HL-value above the median have a different 

input density. Since the plot size is not a decision var-

iable, we leave it out for further analysis. The results 

are shown in the appendix in Table A3 and indicate no 

significant differences, except for HL-total for herbi-

cide use. Since this is a pretty rough estimator where 

F-tests show little explanation power of the regres-

sions, we investigate further. 

For the context at hand, what is more important is 

not the absolute input use, but the over- or underuse of 

an input. Thus, with 𝑥∆  we also test the deviation 

from the profit maximising input use, rather than the 

absolute input use. Since the scale in the risk attitude 

measuring experiment is arbitrary, a linear relation-

ship would be as reasonable as a quadratic one. Con-

sequently, we estimate both of them. 

According to Equation (9), 𝑥𝑘𝑝𝑣
∆  indicates an 

over- or underuse of an input, respectively. For ferti-

liser, we found an overuse in 40 and an underuse in 28 

observations. For herbicides, we found an over- or 

underuse in 74 and 48 observations, respectively. 

Since plot size is not a decision variable, we leave it 

out for further analysis. 

Table 5 shows the influence of the HL risk atti-

tude measures on over- or underuse of fertiliser and 

herbicides. Here, the right-hand side shows the influ-

ence of the HL-measures on input use per observation. 

The estimated coefficients from Equation (10) regard-

ing fertiliser and herbicides are presented, each with 

results for HL-consistent, HL-total and HL-change. A 

previous estimation with only the linear HL-measures 

(not shown), indicates a negative correlation for HL-

total and HL-change with fertiliser at a small signifi-

cance, whereas for herbicides no significance is 

found. Due to the low explanatory power of this mod-

el in terms of R-squared, we also provided a quadratic 

model, which has superior explanatory power. A 

higher HL-measure indicates a farmer having a higher 

degree of risk aversion. Moreover, the respective 

marginal effect of these HL-measures on 𝑥𝑘𝑝𝑣
∆  is cal-

culated (Equation (11)). As with Table 4, the effect is 

determined to be definite if more than 75% of the 

observations point in one direction. Before interpret-

ing Table 5, it is necessary to recall that fertiliser was 

found to be risk-reducing while herbicide was found 

to be risk-increasing (Table 4). 

Table 5.  Effect of HL-measures on fertiliser and herbicide over- or underuse (𝒙𝒌𝒑𝒗
∆ )

a) 

 

Estimated influence of the respective HL-

measure on over- or underuse of input 

(Equation (10)) 

Marginal effect of the respective HL-measure on 

over- or underuse of input 

 (Equation (11)) 

 

Linear 

(𝛾1)  

Squared 

(𝛾2)  

Positive marginal  

effect 

𝜕𝑞(𝑥𝑘𝑝𝑣
∆ ) 

𝜕𝐻𝐿𝑖
> 0  

Negative marginal 

effect 

𝜕𝑞(𝑥𝑘𝑝𝑣
∆ ) 

𝜕𝐻𝐿𝑖
< 0  

 

Mean p-value Mean p-value 

𝑥𝑘𝑝𝑣
∆  Fertiliser

 

       𝐻𝐿𝑖-consistent
b) c)

 -272.2 0.025** 24.940 0.051* 78.0% 32/41
d)

 22.0% 9/41
d)

 

𝐻𝐿𝑖-total
b)

 -154.0 0.115 9.865 0.338 85.3% 58/68
d)

 14.7% 10/68
d)

 

𝐻𝐿𝑖-change
b)

 -197.9 0.008*** 19.25 0.036** 55.9% 38/68
d)

 44.1% 30/68
d)

 

𝑥𝑘𝑝𝑣
∆  Herbicides

 

       
𝐻𝐿𝑖-consistent

b) c)
 4.510 0.034** -0.629 0.017** 21.3% 16/75

d)
 78.7% 59/75

d)
 

𝐻𝐿𝑖-total
b)

 2.469 0.142 -0.287 0.144 21.3% 26/122
d)

 78.7% 96/122
d)

 

𝐻𝐿𝑖-change
b)

 3.484 0.021** -0.516 0.011** 36.9% 45/122
d)

 63.1% 77/122
d)

 

Notes: significantly different from zero at the *10%, **5% and ***1% levels. a) Estimating with fixed effects at the district level, as 

well as at the village level, results in qualitatively similar results, but in higher losses of degrees of freedom. Moreover, estimating with 

the HL-measures from the first HL-lottery leads to similar results. b) Each line represents estimation results of one regression. c) Lost 

observations through inconsistency are 27 and 47 for fertiliser and herbicides, respectively. d) Share of observations with the respective 

marginal effect. 

Source: own presentation 
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For the three regressions with 𝑥𝑘𝑝𝑣
∆  fertiliser as 

the dependent variable, we found that the coefficients 

of HL-consistent and HL-change are significantly 

different from zero at the 5% (or close) level, which 

strongly indicates a relationship between these HL-

measures and fertiliser use. For HL-total, no signifi-

cant difference from zero is indicated. For HL-total 

and HL-consistent, more than 75% of the observations 

clearly indicate a positive marginal effect of these HL-

measures on 𝑥𝑘𝑝𝑣
∆  fertiliser. Despite the ambiguous 

marginal effect for HL-change, we can clearly support 

the statement that more risk-averse farmers (indicated 

by higher HL-measures) use more (risk-reducing) 

fertiliser. Thus, with respect to fertiliser input, we find 

consistent results for input use and experimentally 

measured risk-aversion. 

For 𝑥𝑘𝑝𝑣
∆  herbicides, we found a pattern within 

the significance levels that is similar to the outcome 

for fertiliser. While the coefficients of HL-total are 

not significantly different from zero, the coefficients 

of HL-consistent and HL-change are significant at the 

5% level. This clearly indicates a relationship between 

the latter two HL-measures and 𝑥𝑘𝑝𝑣
∆  herbicides. For 

HL-consistent and HL-total, a negative marginal ef-

fect on herbicides usage can be seen for more than 

75% of the observations. For HL-change, with a share 

of 63.1%, the marginal effect is ambiguous. Overall, 

results slightly indicate that more risk-averse farmers 

use less (risk increasing) herbicide. This indicates 

consistent results for herbicide use and experimentally 

measured risk-attitude. 

With respect to the second hypothesis “H2: More 

risk-averse farmers use more risk-reducing and less 

risk-increasing inputs”, we find that more risk averse 

farmers use more (risk-reducing) fertiliser and less 

(risk-increasing) herbicides. Consequently, we support 

hypothesis two. It seems that participants’ field behav-

iour towards risk and their experimentally measured 

risk attitude, are consistent with regards to the exam-

ple of using risk-influencing production inputs. In 

other words, results suggest a relationship between 

experimentally measured risk attitude and production 

decision behaviour for the context of this article. 

5 Conclusions 

Production output in agriculture can vary considera-

bly, making farming a risky business. Literature indi-

cates that such output variance, i.e. output risk, can be 

influenced by the choice of production inputs. How-

ever, these output risks, combined with farmers’ risk 

attitudes, influence farmers’ production decisions. 

Having a better understanding of farmers’ risk attitude 

can help with better understanding farmers’ produc-

tion decisions, specifically with respect to output risk 

and, thus, in better handling of changing circumstanc-

es. This is relevant for farmers, as well as for the de-

velopment of proper policy measures. This research is 

done for the case of rubber farmers in Jambi province 

on Sumatra, which is a relevant rubber producing 

region in Indonesia. The output risk of rubber produc-

tion is especially relevant for the research area, since 

in large parts of the area, rubber is the main tree crop 

and, therefore, plays a major role in income genera-

tion for farmers. 

To investigate the research hypotheses, i.e. 

”H1: The intensity of used production inputs has an 

influence on output variance” and “H2: More risk-

averse farmers use more risk-reducing and less risk-

increasing inputs”, a JP production function was esti-

mated to determine inputs’ influence on output vari-

ance. Furthermore, a HL lottery was used to experi-

mentally measure farmers’ risk attitudes. We find that 

fertiliser is a variance-reducing input, whereas herbi-

cides and plot size are variance-increasing production 

inputs. In accordance with our expectations, we found 

that more risk averse farmers use more (risk-reducing) 

fertiliser and less (risk-increasing) herbicides. These 

results suggest a consistent relationship between the 

use of inputs with respect to inputs’ influence on out-

put risk and the experimentally measured risk attitude, 

which we interpret as external validity of the experi-

mentally measured risk attitude. 

In the literature the relationship between field be-

haviour towards risk and experimentally measured 

risk attitude is unclear. Some articles show only minor 

significance or inconsistent correlations between field 

behaviour and experimentally measured risk attitude, 

while other articles show consistent correlations. Cur-

rently, it is purely speculative as to what might ex-

plain the varying findings of different authors. How-

ever, recent articles which test the external validity of 

experimentally measured risk attitude in agriculture, 

find predictive power in emerging economies like 

Peru (ENGLE-WARNICK et al., 2007) or Uganda 

(VARGAS HILL, 2009), whereas in industrialised coun-

tries like the USA (BARHAM et al., 2014) or Germany 

(HELLERSTEIN et al., 2013), little or no predictive 

power is found. Thus, it is possible that experimental 

participants in developing countries act more repre-
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sentatively in the experimental task, than participants 

in developed countries. Conversely, ANDERSON and 

MELLOR (2009) found predictive power in such ex-

periments in the USA; however, the experiment was 

related to health decisions and not to agricultural pro-

duction. It can, therefore, be determined that the topic 

of external validity is still not certain. 

With the present article we contribute to this con-

troversial discussion. This discussion, however, de-

mands further contributions. Applying the method in 

this article to other crops, an evaluation of a farm as a 

whole, or to other countries could further strengthen 

the findings. Moreover, extending the method to a 

panel data set could account for possible changes over 

time which would further support the discussion of 

external validity of experimental results. Additionally, 

LENCE (2009) discusses the difficulties of estimating 

the risk aversion in combination with a JP production 

function. In this context, it could be interesting to 

compare the estimated with the measured risk attitude. 

Our results are relevant for several reasons. First, 

we tested the external validity of experimentally meas-

ured risk attitude with an incentivised HL lottery by 

comparing the results with those of a JP production 

function. This is relevant because output risk, defined 

by output variance, is a direct risk measure. Moreover, 

influencing output risk with input choice is something 

that can be done by a vast majority of farmers. Sec-

ond, we found significant influence of fertiliser and 

herbicides usage on output risk for rubber production 

and that the use of these inputs goes along with farm-

ers’ experimentally measured risk attitudes. This 

knowledge can help with managing such risks, and 

provides important information for farmers, as well as 

for policy makers. The massive expansion of oil palm 

plantations in the research area causes considerable 

negative externalities (KOH and WILCOVE, 2008; 

LAUMONIER et al., 2010; WILCOVE and KOH, 2010). 

Since rubber is the obvious alternative to oil palm in 

this region, increasing the attractiveness of rubber 

production by knowing how to handle output risk and 

especially output variance may lead to a conversion to 

this crop, which would reduce the aforementioned 

negative externalities resulting from oil palm. 
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Appendix 

Table A1. Quadratic production function in levels 

  Mean Standard Error
a) 

p-value 

Fertiliser -1.790 2.401 0.461 

Herbicides 85.609 58.363 0.152 

Labour 1.426 1.034 0.177 

Plot size 353.718 514.561 0.496 

Plantation age 114.081 74.687 0.136 

Fertiliser x fertiliser 0.006 0.002 0.003*** 

Fertiliser x herbicides -0.613 0.136 0.000 

Fertiliser x labour -0.003 0.001 0.073 

Fertiliser x plot size 0.711 0.561 0.214 

Fertiliser x plantation age 0.350 0.168 0.044* 

Herbicides x herbicides 6.621 1.330 0.000 

Herbicides x labour 0.045 0.065 0.494 

Herbicides x plot size -39.571 22.705 0.090 

Herbicides x plantation age -5.764 3.506 0.109 

Labour x labour 0.000 0.001 0.602 

Labour x plot size -0.051 0.312 0.872 

Labour x plantation age -0.037 0.061 0.545 

Plot size x plot size -14.006 14.201 0.331 

Plot size x plantation age 152.995 41.215 0.001*** 

Plantation age x plantation age -1.157 0.983 0.248 

Constant -868.405 1066.931 0.421 

Observations 260   

Adjusted R-square 0.617   

Notes: significantly different from zero at the *10%, **5% and ***1% levels. a) heteroscedasticity robust standard errors 

Source: own presentation 

 

Table A2.  Elasticities of input use on output variance, Cobb-Douglas specification 

  Mean Standard Error
a) 

p-value 

Fertiliser -0.220 0.134 0.101 

Herbicides 0.004 0.121 0.973 

Labour -0.112 0.154 0.470 

Plot size 0.450 0.155 0.004*** 

Plantation age 0.053 0.150 0.724 

Dummy fertiliser -2.451 1.633 0.135 

Dummy herbicides 0.107 1.136 0.925 

Dummy fertiliser x dummy herbicides -0.177 0.399 0.658 

Constant 6.623 2.668 0.014** 

Observations 260   

Adjusted R-square 0.491     

Note: significantly different from zero at the *10%, **5% and ***1% levels. 

Source: own presentation 
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Table A3.  Effect of HL-measures on fertiliser and herbicide use per hectare. 

 𝐇𝐋𝐢-consistent 𝐇𝐋𝐢-total 𝐇𝐋𝐢-change 

 Mean p-value Mean p-value Mean p-value 

Fertiliser: Model 1
a)

 

HL-measure -3.812 0.735 -8.550 0.399 2.685 0.777 

Intercept -127.356 0.029** -148.282 0.007*** -193.971 0.000*** 

Fertiliser: Model 2
b)

 

Dummy -53.426 0.357 -71.144 0.138 -35.055 0.493 

Intercept -119.966 0.007*** -137.327 0.002*** -159.931 0.002*** 

Herbicides: Model 1
a)

 

HL-measure -0.282 0.358 -0.438 0.080* 0.022 0.924 

Intercept 2.099 0.133 1.259 0.296 -0.661 0.468 

Herbicides: Model 2
b)

 

Dummy -2.525 0.117 -4.038 0.001*** -1.576 0.219 

Intercept 2.068 0.007*** 2.203 0.002*** 0.553 0.002*** 

N 137  260  260  

Note: significantly different from zero at the *10%, **5% and ***1% levels. a) Model 1 estimates the linear relationship of the respective 

HL-measure and the input use. b) Model 2 estimates the relationship of the input use and the respective HL-measure according a Dummy 

accounting for HL-values above the median. 

Source: own presentation 

 

Figure A1. HL lottery 

 
Source: authors’ illustration following IHLI and MUßHOFF (2013) 


