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Abstract  

Assuming that agglomeration effects do matter in 

organic farming we analyse (a) the difficulties due to 

data aggregation arising when trying to statistically 

verify neighbourhood effects and (b) whether results 

can be confirmed at different spatial resolutions. Ex-

plaining the spatial distribution of organic farming in 

southern Germany (2007) we compare results of spa-

tial lag models at two measurement scales. The results 

suggest that essential factors determining the decision 

to convert from conventional to organic farming are 

found at different spatial resolutions. The results at 

the lower spatial resolution are not artificially gener-

ated through the aggregation process in this case, 

strengthening the relevance of previous studies. 
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Zusammenfassung 

Unter der Annahme, dass Agglomerationseffekte im 

ökologischen Landbau von Bedeutung sind, untersu-

chen wir (a) die Schwierigkeiten, welche auf die Ag-

gregation von Daten zurückzuführen sind und dann 

auftreten, wenn Nachbarschaftseffekte statistisch nach-

gewiesen werden sollen und (b) ob Ergebnisse auf 

verschiedenen räumlichen Ebenen bestätigt werden 

können. Wir erklären die räumliche Verteilung des 

ökologischen Landbaus in Süddeutschland (2007) und 

vergleichen die entsprechenden Ergebnisse erweiter-

ter autoregressiver Modelle auf zwei räumlichen Ebe-

nen. Die Ergebnisse deuten darauf hin, dass wesentli-

che Faktoren, die die Umstellungsentscheidung von 

der konventionellen auf die ökologische Wirtschafts-

weise beeinflussen, auf verschiedenen räumlichen 

Ebenen nachgewiesen werden können. Die Ergebnisse 

für die geringere räumliche Auflösung werden in die-

sem Fall nicht künstlich durch den Aggregationspro-

zess erzeugt, was die Aussagekraft vorheriger Studien 

stärkt. 

Schlüsselwörter 

Ökolandbau; räumliche Verteilung; Agglomerations-

effekte; räumliche Ökonometrie 

1  Introduction 

Earlier research has combined common location fac-

tors, such as climate and soil, with the concept of ag-

glomeration effects and found – based on aggregated 

data – that neighbourhood effects may influence the 

spatial distribution of organic farming (BICHLER et al., 

2005, SCHMIDTNER et al., 2012). Background to these 

finding was economic theory: SCHMIDTNER et al. 

(2012) developed a theoretical model linking the deci-

sion to convert from conventional to organic farming 

to factors of different spatial characteristics.  

BICHLER et al. (2005) and SCHMIDTNER et al. 

(2012) both operated at the German county level, an 

administrative unit covering different areal sizes, 

number of farms and utilized agricultural areas 

(UAA). The agricultural decision-making and produc-

tion processes, however, are assumed to operate at the 

farm-level. Thus, an analysis at a high spatial resolu-

tion such as the farm-level would be preferable in the 

context of analysing potential agglomeration effects in 

organic farming. Until now the data availability re-

stricted the spatial analyses to the county level. Im-

proved data availability now allows us to analyse data 

at a higher spatial resolution, the community associa-

tion level, and to compare the results to another meas-

urement scale, the county level (based on the same 

original data). Thereby, we intend not only to adjust 

the analysis but also to critically question the previous 

results based on spatial entities as we believe that 
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deepening scientific research is only possible while 

continuously testing the appropriateness of the basic 

scientific approach and data used. We hypothesize 

that agglomeration effects become manifest at both 

measurement scales and that results at a lower spatial 

resolution are not merely artificially generated through 

the aggregation process but can be supported by a 

comparable analysis at a higher spatial resolution for 

the organic farming sector. 

In 2007, nearly half of the approximately 375 000 

German farms are located in Bavaria and Baden-

Württemberg (the two southern federal states which 

are central to this study), managing about 25 per cent 

of the 17 million hectares UAA in Germany. With an 

average farm size of about 25 ha per farm the southern 

farms are relatively small (German average: 48 ha per 

farm). The southern farms are characterized by a rela-

tively high grassland share in total UAA; in Baden-

Württemberg, the share of permanent crops (like 

wine) in total UAA is above the German average. On 

arable land, cereals like wheat and barley are domi-

nant; in Bavaria also fodder crops such as silage 

maize are important. Regarding animal husbandry, 

Bavaria is characterised by a high number of cattle 

(especially dairy cows) per UAA. Some regions in 

Baden-Württemberg (like the county Schwäbisch 

Hall) have a high density of pigs, especially breeding 

sows (SAEBL, 2010). Organic farming is an interest-

ing case as it is distributed quite unevenly within 

Germany and the southern federal states of Bavaria 

and Baden-Württemberg (Figure 1). About 56% of all 

German organic farms are located in Bavaria and Ba-

den-Württemberg (BLE, 2009). We conduct the em-

pirical analysis for these two federal states in 2007. 

Due to data availability, we apply a cross-sectional 

approach at the selected measurement scales. Thus, 

the empirical model analyses the share of organic 

farms in all farms at a given point in time and at two 

different spatial resolutions. 

Spatial data has special characteristics, such as 

the multi-directional relationship of spatial units, so 

we account for spatial effects in our analysis. Proba-

bly the most famous definition of spatial effects is 

given by the first law of geography in which ‘every

Figure 1.  Spatial distribution of organic farming in Bavaria and Baden-Württemberg at the community 

association level (2007) 

 

Source: authors’ own presentation based on BKG (2010), BLE (2009) and ASE according to SAEBL (2010) 
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thing is related to everything else, but near things are 

more related than distant things’ (TOBLER, 1970: 

236). Thus, strong relationships are expected among 

variables that are located nearby. ANSELIN (1988) 

distinguishes two kinds of spatial effects: spatial het-

erogeneity and spatial dependence. While the term 

spatial heterogeneity refers to (explanatory) variables 

that differ in space (like soil or climate conditions), 

the term spatial dependence specifies a functional 

relationship between events at different places in 

space (for a more detailed discussion see also LESAGE 

and PACE, 2009). Agglomeration effects result in spa-

tial dependence. In the following we suppose positive 

spillover effects in space between farms; we expect 

these effects to overcompensate possible negative 

spillovers like competition for special inputs. These 

effects can be direct (e.g., because of direct communi-

cation between farmers) or indirect (e.g., due to local 

institutions or markets that are brought about or im-

proved when many neighbouring actors have the same 

business). Our hypothesis is that in addition to the 

classical factors that determine the location of agricul-

tural production, agglomeration effects also influence 

the spatial distribution of agricultural activities like 

organic farming. In other words: different incidences 

of organic farms in space may be caused by different 

natural and other location factors (i.e., spatial hetero-

geneity) and/or by the beneficial (self-enhancing) 

effects of higher shares of organic farms (i.e., spatial 

dependence). 

Beyond that, ANSELIN and GETIS (2010) note 

that spatial effects can also be due to the structure of 

spatial measurement units, i.e., the size, shape and 

configuration of spatial units may influence the prob-

ability of spatial dependence in nearby units. Most 

geographers agree that ‘scale matters’. However, the 

conception of geographic scale varies across disci-

plines and research objectives. While using and com-

paring results at different spatial resolutions are com-

mon practices in the geosciences (TAYLOR, 2004), a 

comparable systematic approach is hardly to be found 

in agricultural economics, particularly for the organic 

farming sector. GOODCHILD and PROCTOR (1997) 

state that the term scale is often ambiguously used to 

refer to two aspects of geographic information: the 

level of detail and the extent of geographic coverage. 

While GIBSON et al. (2000) generally use the term to 

refer to the spatial dimension used to measure any 

phenomenon, ATKINSON and TATE (2007) refer to the 

scales of spatial variation that are present in data and 

result from measurement. LAM (2004) established a 

classification of scale ‘types’ including, for example, 

the observational scale (referring to the spatial extent 

of a study area), the measurement scale (the resolu-

tion) and the operational scale (referring to the spatial 

extent where geographical processes take place). Ac-

cording to SMITH (2004), the scale of spatial units can 

be seen as naturally given or as a methodological as-

pect of research. The latter aims at defining the appro-

priate spatial scale for a research problem or compar-

ing results at different spatial resolutions. Another 

issue, called the Modifiable Areal Unit Problem 

(MAUP), is that results can differ between analyses at 

different spatial resolutions (OPENSHAW, 1984; see 

also WONG, 2009). Even more, the results may re-

verse in some cases, such as spatial examples of 

Simpson’s Paradox (SIMPSON, 1951). Thus, the actual 

relevance of results based on aggregated data is argu-

able. In this study, we treat scale as a methodological 

aspect of research. To see whether our results still 

hold when the data is less aggregated, we will conduct 

an empirical analysis at two different measurement 

scales using the terminology introduced by LAM 

(2004).  

Another issue that might affect an empirical 

analysis of organic farming is the conceptualization of 

the spatial relationships of spatial units through spatial 

neighbourhood matrices. According to ANSELIN 

(2002), the determination of such matrices is some-

what arbitrary. Recently, there have been various ap-

proaches to specifying the spatial weights matrix (see, 

e.g., GETIS and ALDSTADT, 2004; ALDSTADT and 

GETIS, 2006; FERNANDEZ-VAZQUEZ and RODRIGUEZ-

VALEZ, 2007; KOSTOV, 2010). Nevertheless, there is 

no formal guidance for selecting the ‘correct’ spatial 

neighbourhood matrix (LEE, 2008). As the real spatial 

interdependences and interaction structures of organic 

farms are not known, we analyse, compare and dis-

cuss different specifications of the spatial neighbour-

hood matrix. These specifications are based on the 

data and theoretical considerations regarding the 

structure of spatial dependence in the organic sector.  

In the remainder of the article, we frame the con-

cept of agglomeration effects in organic farming. 

Then, we explain the utilization of different spatial 

resolutions and neighbourhood matrices in the context 

of our study. After presenting our econometric model 

in section 4, we introduce the data used and variables 

constructed. Next, we present and discuss the results, 

and finally, we draw conclusions.  
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2  Concept of Agglomeration  
Effects in Organic Farming 

In the new economic geography (KRUGMAN, 1996; 

FUJITA et al., 1999), factors such as labour pooling, 

technology spillovers and backward and forward link-

ages in production may increase external economies 

of scale and, thus, favour the concentration of eco-

nomic activity. While some of these factors causing 

agglomeration, such as knowledge spillovers or natu-

ral advantages, may take place only at a narrow opera-

tional scale, others, such as input and output linkages, 

may operate at a wider spatial extent (GIACINTO and 

PAGNINI, 2008). Thus, the adoption of organic farm-

ing practices could be due to different agglomeration 

patterns, depending on the operational scale.  

We assume that easy interaction with organic 

farmers due to local proximity and a strong institu-

tional and market network positively influence the 

propensity of conventional farmers to convert to or-

ganic farming. Besides, also negative edge-effect ex-

ternalities like emissions of pesticides or genetically 

modified pollen from neighbouring conventional 

fields (cf. PARKER and MUNROE, 2007) are likely to 

be less frequent in case of a high share of organic 

farmers within a certain region which may facilitate 

the conversion to organic farming for further farmers. 

Such neighbourhood effects (positive agglomeration 

effects) may be one reason for organic agglomeration 

in space. Generally, the decision to convert to organic 

farming can be seen as an investment problem. Be-

yond the expected profit, this decision is influenced 

by issues such as the transaction costs of converting 

from one farming type to another and possibly by the 

additional utilities associated with organic farming 

(cf. SCHMIDTNER et al., 2012).  

Analysing organic land conversion in Greece, 

GENIUS et al. (2006) suggest that the provision of 

information has an important positive influence on the 

adoption of organic farming. At a high spatial resolu-

tion such as the community level, direct communica-

tion between farmers may be one essential source of 

knowledge exchange. The attitudes of farmers to-

wards alternative agriculture and the resulting ac-

ceptance of organic farmers in the social environment 

might determine the location of organic production in 

space. It is also likely that the common use of ma-

chinery such as combine harvesters1 is facilitated if 

                                                            
1  Due to the relatively small farm sizes in Germany, ma-

chinery such as combine harvesters are quite often shared 

organic farms that want to commonly use machinery 

are located nearby. At a lower spatial resolution such 

as the county level, other factors might be of im-

portance. Analysing the Danish pig sector, LARUE et 

al. (2011) state that spatial technical externalities may 

arise from the diffusion of information and knowledge 

through, for example, farmers’ associations. Also, the 

availability of input and output markets as well as the 

associated infrastructure may be relevant to the geo-

graphic concentration of organic farming in Germany 

assuming that transportation costs are relevant  

(THÜNEN, 1826). In addition, extension services of the 

German organic farmers’ associations or veterinary 

services might work on a large scale. Furthermore, 

proximate organic processors, such as organic dairy 

enterprises, may facilitate the selling and further pro-

cessing particularly of perishable organic products 

like milk (BICHLER, 2006). However, competition in 

input and output markets, such as access to agricultur-

al land, could have a dispersal effect on agglomeration 

(LARUE et al., 2011).  

Considering the various factors potentially caus-

ing agglomeration of organic farming, it is challeng-

ing to assess the importance of particular agglomera-

tion patterns. Neighbourhood effects may not only 

differ but also span spatial measurement scales. An 

associated problem is the availability of data that is, in 

our case, bound to administrative units. Thus, we can 

only approximate the situation of single farms by us-

ing available aggregated data at the selected spatial 

levels.  

One reason of the differing effects of explanatory 

factors at varying degrees of data aggregation can be 

Simpson’s paradox (cf. the corresponding example 

and Figure A1 in the Annex). Another didactic exam-

ple to illustrate one challenge arising for spatial anal-

yses is presented in Figure 2 which shows the spatial 

distribution of the density of organic farms, i.e., the 

number of organic farms per square kilometre for a 

constructed region and two measurement scales.  

For this example we assume that there are not 

any relevant explanatory variables but positive ag-

glomeration effects in the closer vicinity (indicated by 

a first order neighbourhood matrix). The underlying 

data has been generated and classified into categories 

by us. It is further assumed that no significant spatial 

concentration of organic farms can be found at the 

                                                                                                   
and used by several farmers. An organic farmer using a 

harvester previously used on a conventional field risks 

to ‘contaminate’ his crop with pesticide residues as com-

bine harvesters are difficult to clean. 
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lower spatial resolution (county level), but rather, is 

found within particular counties (at the higher spatial 

resolution, the community level).2 Such a spatial pat-

tern could be due to important benefits such as the 

common use of machinery or other assets but little or 

no beneficial spillover effects at the spatial scale of 

the counties. The global Moran’s I (ANSELIN, 1988) is 

calculated to determine whether spatial autocorrela-

tion of organic farms exists. As presented in Table 1, 

the global Moran’s I test indicates a positive and high-

ly significant spatial autocorrelation only at the com-

munity level. At the county level, no spatial autocorre-

lation is indicated and, thus, no first-order spatial au-

toregressive model could be estimated at this spatial 

level. Hence, the uneven spatial concentration of or-

ganic farms in the communities cannot be taken into 

account in the analysis at the county level. This points 

us to a general problem: while using aggregated data, 

information like the spatial distribution of aspects at a 

higher spatial resolution is lost.  

To conclude, the two examples support the con-

cerns about the relevance of results based on aggre-

gated data. To address that issue, we compare results 

at different spatial measurement scales. 

                                                            
2  The example could also be translated to other issues 

such as the density of residents or firms. 

3  Spatial Resolution and  
Spatial Neighbourhood Matrix 
Determination 

There exist studies on the organic sector that use spa-

tial econometrics to analyse the spatial distribution of 

organic farming (cf. BICHLER et al., 2005; PARKER 

and MUNROE, 2007; SCHMIDTNER et al., 2012). How-

ever, to our best knowledge, there is no study in the 

field of spatial econometrics that analyses the spatial 

distribution of organic farming at different aggrega-

tion levels. As results might differ between different 

spatial resolutions (OPENSHAW, 1984), we aim to 

analyse spatial effects at different measurement 

scales. The lowest spatial resolution that offers suffi-

cient explanatory variables for the analysis is the 

community association level. We additionally account 

for a lower spatial resolution (the county level) that 

consists of several community associations.3 In the 

year 2007, Bavaria and Baden-Württemberg were 

organized into 1 886 community associations and 140 

counties. However, some counties are very small, 

covering only the area of a city (Table 2 in section 5). 

                                                            
3  Thus, the dataset is based on NUTS 3 level (county-

level) (NUTS being the Nomenclature of Territorial Units 

for Statistics, established by Eurostat). 

Figure 2.  Spatial distribution of the density of organic farms at two measurement scales  

 

Source: authors’ own presentation based on data generated by the authors 
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2
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2
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While 24% of all counties are such ‘city counties’, 

they only cover 3% of Bavaria’s and Baden-

Württemberg’s total land area. In the case of the city 

counties, the regional metropolis and its surrounding 

districts are separated artificially, while in other re-

gions the regional metropolis is part of the county. 

Additionally, the city counties often have only one 

neighbour (the surrounding district) and little agricul-

ture. To avoid the problems associated with very 

small counties and to obtain more spatially uniform 

units, the city counties are integrated into larger neigh-

bouring counties based on a systematic approach de-

veloped by the Federal Agricultural Research Centre 

(OSTERBURG, 2005). Thereby, the number of counties 

is reduced from 140 (original counties) to 106 (inte-

grated counties, further on just called ‘counties’).  

To capture spatial aspects and represent spatial 

relationships at the two measurement scales, a spatial 

neighbourhood matrix W is used that indicates the 

relative position and proximity of spatial units. To 

determine the spatial connectivity we draw on two 

approaches based on geographical information: conti-

guity (adjacency) and distance-based neighbourhood 

matrices (ANSELIN, 1988). The latter includes inverse 

distance-based neighbourhood matrices and matrices 

identifying the k-nearest neighbours. Because it is 

impossible to estimate the spatial neighbourhood ma-

trix W, we take it as exogenously given (cf. ANSELIN, 

2002). To examine the stability of the estimation re-

sults we try out different specifications of W. 

The spatial neighbourhood matrix is an N x N 

matrix with the weights wij. To facilitate the interpre-

tation of the estimated coefficients, the neighbourhood 

matrix W is row-standardized (see ANSELIN, 1988) for 

all approaches by the following weighting scheme:  

1

*
j

ij
ij

N
ij

j

w
w

w





 

 (1) 

with  

i  = a spatial unit, 

j = another spatial unit,  

N  = Ni = Nj = number of spatial units.  

Probably the most common approach in spatial 

econometrics is to derive a contiguity-based neigh-

bourhood matrix from the administrative units given, 

i.e., adjoining spatial units are defined as neighbours. 

We determine spatial neighbours according to the 

queen criterion. Thus, spatial units that share a com-

mon border or a vertex are treated as neighbours. The 

weights of the contiguity-based neighbourhood matrix 

are defined as follows: 

1,   if    and   have a common border or vertex  

0,  otherwise 
ij

i j
w


 
 .

  (2) 

We consider first and second order neighbours.4 

In the case of the first order neighbourhood matrix 

W(1), the weights are assigned according to Condition 

(2). For W(2), the first and second order neighbours of 

district i are considered and treated equally. A sche-

matic integration of small city counties into neigh-

bouring counties (integrated counties) results in a 

much more uniform neighbourhood matrix than the 

matrix for the original counties. This is another reason 

to use the integrated counties for the analysis.  

The distance-based approach of defining a spa-

tial neighbourhood matrix includes inverse distance-

based neighbourhood matrices and matrices identify-

ing the k-nearest neighbours. It is assumed that the 

strength of the spatial relationship declines as distance 

increases between spatial units (GETIS, 2010). Both 

approaches share the challenge of determining the 

appropriate distance or number of neighbours to en-

sure that every district i ≠ j has at least one neighbour. 

Otherwise, the spatial neighbourhood matrix would be 

incomplete and information of artificially generated 

‘island units’ could not be considered in the analysis.  

According to LEE (2008), the critical distance 

approach is appropriate when spatial interactions are 

expected to decrease with distance until they are ab-

                                                            
4  First order neighbours have a common border with the 

respective district. Second order neighbours have a 

common border with the first order neighbours (except 

the respective district itself). 

Table 1.  Descriptive statistics and diagnostic test for spatial dependence for the number of organic 

farms per km
2 
(spatial weight: first order contiguity matrix W

(1)
)* 

  N Mean Std Dev Median Min Max Moran's I p-value 

Community level 625 2.19 1.63 1.80 0.05 9.80 0.37 0.00 

County level 25 2.19 0.59 2.18 1.27 2.96 0.00 0.36 

*The data relate to the fictitious example presented in Figure 2. 

Source: authors’ own calculations based on data generated by the authors 
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sent beyond a certain critical distance. By defining a 

critical distance, an area of influence (‘moving win-

dow’) is imposed.  

The distance-based neighbourhood matrix is defined as: 

1
,   if the distance (dist ) 

dist

between  and   is less 

than a critical distance

0,  otherwise

ij

ij

ijw i j






 




  

(3) 

The neighbourhood matrix identifying the k-nearest 

neighbours is based on the following condition: 

1,   if   is one of ’s nearest neighbours, 

where k  0

0,  otherwise

ij

j i

w




 



 (4) 

We assume that interactions between farmers de-

cline with increasing distance. However, there is no 

theoretical evidence for a certain critical distance for 

our research problem. NEGREIROS (2009) notes that 

the distance-based neighbourhood approach is blind to 

obvious natural neighbours and suggests combining it 

with the contiguity-based neighbourhood approach to 

identify direct neighbours. To tackle that point, we 

evaluate the first order contiguity-based neighbour-

hood matrix and use the information gained to estab-

lish a framework determining the distance-based 

neighbourhood relationships. The first order contigui-

ty-based neighbourhood matrix of the community 

associations shows an average number of links of 5.8; 

the most connected region has 24 links. The largest 

distance between two adjacent community associa-

tions is 26,320 m. The distances are calculated based 

on the geographical centroid of each spatial unit and 

measured in meters. We now base the selection of 

relevant distances on at least some plausibility: we 

draw on the spatial characteristics like connections to 

other regions and distance between two adjacent 

communities. Thus, we use several matrices at the 

community association level: a neighbourhood matrix 

identifying the 24 nearest neighbours (W(24nn)), a re-

stricted inverse distance-weighted neighbourhood 

matrix (W(idw30)) considering distances up to 30 km 

(rounded up from 26.32 km) and an unrestricted in-

verse distance-weighted neighbourhood matrix 

(W(idw)). The matrix W(idw) contains the row-standard-

ized inverse distance of each centroid of district j ≠ i 

to the centroid of district i. As the maximum distance 

of 26.32 km between two community associations 

exists only in one case, a lower critical distance 

(W(idw15)) is also analysed. As presented in Figure A2 

(Annex), the definition of different critical distance 

bands results in quite different spatial connectivities 

of the community associations. For the counties, only 

the first order, second order and inverse distance-

weighted neighbourhood matrices are considered. 

Using the k-nearest neighbours approach ensures that 

every spatial unit has the same number of neighbours, 

regardless of the size of the spatial units. However, 

the corresponding weighting matrix is asymmetric 

(ANSELIN, 2002). That means if j is a neighbour of i, i 

does not have to be a neighbour of j depending on the 

distances to other neighbouring units. Thus, the k-

nearest neighbour approach would be especially use-

ful to account for specific aspects such as trade rela-

tionships in the organic sector. Even if corresponding 

data is not available, we use the k-nearest neighbours 

approach as an alternative way of representing spatial 

relationships based on distance. 

4  Econometric Model 

The alternative specifications of the spatial neigh-

bourhood matrix W are implemented in the economet-

ric model we use for our analysis. As also described in 

SCHMIDTNER et al. (2012), the general version of our 

model is given by the following equations (cf. ANSELIN, 

1988; LESAGE, 1999): 

y Wy X u     (5) 

u Wu    (6) 

with 
2~ (0, )NN I   

and 

y = vector containing the share of organic farms 

within all farms in the selected administrative 

units in Bavaria and Baden-Württemberg; 

X = matrix containing the observations for m inde-

pendent variables for every administrative unit; 

W = row-standardized spatial weight matrix; 

IN = identity matrix; 

u = vector of the spatially correlated residuals; 

ε = vector of normally distributed errors (mean = 0, 

variance = σ2); 

β = vector containing the regression coefficients for 

the explanatory variables; 

ρ = spatial lag coefficient reflecting the importance 

of spatial dependence; 

λ = coefficient reflecting the spatial autocorrelation 

of the residuals u. 
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As we use row-standardized spatial weighting matri-

ces W the estimated coefficients ρ and λ will usually 

lie between -1 and 1 (theoretically, the lower bound of 

ρ could be less than 1 also in case of row standardiza-

tion, see ANSELIN, 1999: 7f.). A significant spatial lag 

coefficient ρ indicates the possible existence of ag-

glomeration effects resulting in spatial dependence, 

whereas a significant coefficient λ hints at spatial au-

tocorrelation of the residuals u (spatial heterogeneity). 

We do not know from theoretical considerations 

which spatial effects influence the spatial distribution 

of organic farming in southern Germany. However, 

previous studies such as BICHLER et al. (2005) and 

SCHMIDTNER et al. (2012) indicated that neighbour-

hood effects are very likely to influence the spatial 

distribution of organic farming at the county level in 

Germany. Thus, we strongly assume spatial lag effects 

to be also relevant in our research setting. 

Generally, there are four possibilities (resulting in 

different models): 

(i) ρ = λ = 0 (common Ordinary Least Squares (OLS) 

model); 

(ii) ρ ≠ 0, λ = 0 (spatial lag model); 

(iii) ρ = 0, λ ≠ 0 (spatial error model) and 

(iv) ρ ≠ 0, λ ≠ 0 (general spatial model). 

Next to the theoretical considerations above we draw 

on the (robust) Lagrange Multiplier test for spatial 

autocorrelation in the residuals from OLS (ANSELIN et 

al., 1996) to identify which of the two effects are rele-

vant in our analysis (cf. ELHORST, 2012).  

5  Data and Variable Construction 

Previous studies such as BICHLER et al. (2005) and 

SCHMIDTNER et al. (2012) draw on agricultural data 

from the official farm census, which are partly re-

stricted due to data protection legislation and are only 

available at the county level for organic farming. Due 

to an improved database, we now have access to in-

formation on all 10 934 certified organic farms and 

3 104 organic processors in Bavaria and Baden-

Württemberg (BLE, 2009). Unfortunately, the precise 

location of the farms and processors is also not avail-

able. However, the provided residential postal code is 

used to assign the location of the organic farms and 

processors to the community associations (DEUTSCHE 

POST DIREKT, 2010).  

As described in section 3, the analysis is con-

ducted at two measurement scales: the community 

association and county level. Due to the data availa-

bility the spatial level of community associations is 

the lowest administrative unit at which our analysis 

(using several data sources) can be performed. To test 

the robustness of spatial models, different specifica-

tions of the spatial neighbourhood matrix are consid-

ered. 

The analysis is conducted for the dependent vari-

able share of organic farms (BLE5) in all farms 

(ASE6). We need to rely upon this farm related varia-

ble because we do not know the share of organically 

farmed land at the community association level. How-

ever, trying to explain the share of organic farms 

makes also sense from a theoretical point of view as 

several supposed agglomeration effects result from 

interactions (communication) between farmers.7 The 

share of all certified organic farms as provided by the 

Federal Agency for Agriculture and Food (BLE, 

2009) is calculated from the total number of agricul-

tural farms reported by the official farm census 

(SAEBL, 2010). However, the official farm census has 

some data restrictions; for example, it accounts only 

for farms with more than 2 ha UAA and a certain 

number of animals. Thus, only farms fulfilling these 

restrictions are represented in the official farm census, 

whereas all organic farms are provided by BLE 

(2009). As shown in Table 2, this results in the fact 

that the maximum share of organic farms (BLE) in all 

farms (ASE) exceeds 100% at the community associa-

tion level. This applies to two community associations 

and is a statistical artefact of the database. At the inte-

grated county level, the bias is reduced through aver-

aging across the counties.  

To capture the availability of and proximity to 

(organic) markets the number of residents per km2, the 

average distance to the next three agglomeration cen-

tres8 (BBR, 2009) and the number of organic proces-

sors per 10 km2 (BLE, 2009) are considered. General-

ly, the location of (potential) consumers might influ-

ence the location of organic producers. It is assumed 

that a high population density indicates a high demand 

potential for (organic) food that might increase result-

                                                            
5  Data source: Federal Agency for Agriculture and Food 

(Bundesanstalt für Landwirtschaft und Ernährung, BLE) 

(BLE, 2009). 
6  Data source: official German farm census (Agrarstruktur-

erhebung, ASE) (SAEBL, 2010). 
7  Furthermore, at least at the county level there is a strong 

correlation between the share of organic farms in all 

farms and the share of organically farmed land in over-

all farmed land. 
8  This variable refers to the average travel time in minutes 

by car to the next 3 out of 36 agglomeration centres as 

defined by the BBR (2009). 
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ing prices for organic products. The proximity to ur-

ban regions (associated with good marketing possibili-

ties) is approximated by the distance to the next three 

agglomeration centres and may lead to a high share of 

organic farms (FREDERIKSEN and LANGER, 2004). 

The existence of organic processors may facilitate the 

selling and further processing of organic products 

(BICHLER, 2006). We assume that organic processors 

in the wider vicinity, e.g., in neighbouring community 

associations, are important for organic farmers. There-

fore, we also account for spatially lagged variables of 

the number of organic processors per 10 km2 using 

different spatial neighbourhood matrices. 

The agricultural structure is approximated by the 

variables share of UAA in the total area, number of 

farms (ASE) per km2 UAA and number of farms (ASE) 

per km2 (SAEBL, 2010). We assume that a high densi-

ty of farms facilitates knowledge exchange between 

farmers.  A high number of organic farms in an area 

might positively influence the propensity of conven-

tional farmers to convert to organic farming. In Ger-

many, the agricultural farm census is based on the 

principle of the farm location (‘Betriebssitzprinzip’), 

i.e., all agricultural activities (e.g., UAA, animal hus-

bandry) are attributed to the location of the farm, even 

if the activities are located in other administrative 

units. This results in the maximum shares of UAA in 

the total area being higher than 100% at the communi-

ty association level (Table 2). Unfortunately, this bias 

cannot be corrected. 

The policy environment in which organic farmers 

operate is described by the share of water protection 

areas in the total area (BLU, 2010; LUBW, 2009), the 

share of nature conservation areas in the total area 

(BFN, 2010) and the share of votes cast for the Green 

Party in all valid votes cast (BLSD, 2011; SLBW, 

2010). For the latter, the mean values of the German 

Bundestag elections in 2005 and 2009 are calculated. 

The restrictions on management in water protection 

areas and nature conservation areas may favour less-

intensive forms of agriculture like organic farming. As 

agricultural activities are not allowed in the central 

catchment area of water protection areas, we only 

account for the wider catchment area (zone 3) of wa-

ter protection areas. To consider the different political 

frameworks for organic farmers in the two federal 

Table 2.  Descriptive statistics for variables of interest at different measurement scales 

  

Mean Min  Max  

Variable Year 
Community 

associations 
Countiesa) 

Community 

associations 
Countiesa) 

Community 

associations 
Countiesa) 

Share of organic farms (BLE) in all farms 

(ASE) (in %) 
2007 5.63 6.60 0.00 1.19 122.58 42.12 

Number of residents per km2 2007 259.01 236.59 0.00 70.68 4,216.20 1,661.29 

Average distance to the next 3 agglomeration 

centres (in min. by car) 
2007 107.84 106.66 49.60 58.80 172.80 164.40 

Number of organic processors per 10 km2 2007 0.33 0.31 0.00 0.04 7.54 2.36 

Share of UAA in the total area (in %) 2007 44.23 43.58 0.00 15.08 158.54 68.48 

Number of farms (ASE) per km2 2007 1.74 1.67 0.00 0.77 14.75 3.06 

Number of farms (ASE) per km2 UAA 2007 4.23 3.94 0.00 2.33 38.74 8.70 

Total annual precipitation (in cm) 1961-1990b) 91.80 92.96 57.08 63.00 203.01 173.12 

Mean annual temperature (in °C) 1961-1990b) 7.89 7.83 5.59 6.32 10.37 9.80 

Soil-Index 1981, 1986c) 47.92 47.73 14.39 27.34 87.00 65.59 

Share of water protection areas in the  

total area (in %) 
2007 8.25 9.91 0.00 0.65 99.84 86.72 

Share of nature conservation areas in the  

total area (in %) 
2007 1.80 2.17 0.00 0.03 99.32 34.82 

Share of votes cast for the Green Party in all 

valid votes cast (in %) 
2005, 2009d) 8.16 9.14 0.00 4.16 27.35 19.86 

Average size of the community associations 

(in km2) 
2007 56.38   1.77   339.07   

Average size of the integrated counties  

(in km2) 
2007   1,003.20   323.96   2,071.27 

Average size of the original counties (in km2)  2007   759.56   35.45   1,971.48 

Community associations: N = 1886 
a) All values refer to the integrated counties (N = 106) with the exception of the variable average size of the original counties (N = 140) 
b) average of 1961-1990 
c) soil data for eastern Germany refer to the year 1981, soil data for western Germany to 1986 (further explanations in the text) 
d) average of 2005 and 2009 

Source:  authors’ own calculations based on BBR (2009), BFN (2010), BLE (2009), BLSD (2011), BLU (2010), DWD (2007),  

FORSCHUNGSZENTRUM JÜLICH (2009), LUBW (2009), SAEBL (2010) and SLBW (2010). More details are given in the text. 
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states, such as the designation of and regulations on 

water protection areas, we also generate a regional 

dummy variable Bavaria.  

The total annual precipitation and mean annual 

temperature are used as natural production factors. 

These data are generated based on data from Germa-

ny’s National Meteorological Service for the time 

period 1961-1990 (DWD, 2007), using an inverse 

distance-weighted interpolation with the power of one 

and including the five nearest locations when assign-

ing a value to a specific point in space. The resulting 

grid is used to calculate zonal statistics and assign 

corresponding mean values to the spatial units. Addi-

tionally, the German soil-index (‘Bodenzahl’)9 is con-

sidered as a measure of the productivity of agricultural 

land (FORSCHUNGSZENTRUM JÜLICH, 2009).  

The estimations are done using the programs  

GeoDa, R and STATA along with additional routines 

                                                            
9  The index ranges from 7 (lowest yield potential) to 100 

(best yield potential) and is generated based on the ob-

served grain structure of the soil material, geological 

development and the state of development of the parent 

material of the soils (cf. SCHACHTSCHABEL et al., 1984). 

provided by KEITT et al. (2010), HOTHORN et al. 

(2010), JEANTY (2010a, b, c, d), PEBESMA and  

BIVAND (2011), BIVAND (2011) and PISATI (n.a.). The 

spatial models according to the equations (5) and (6) are 

estimated using the maximum likelihood method. 

6  Results and Discussion 

To determine if spatial autocorrelation of the depend-

ent variable exists, the local and global Moran’s I of 

the variable share of organic farms (BLE) in all farms 

(ASE) are calculated (cf. ANSELIN, 1988: 102). The 

global Moran’s I tests indicate a positive and highly 

significant spatial autocorrelation for the dependent 

variable at all measurement scales. The Moran’s I 

varies between 0.306 (W(1)) and 0.041 (W(idw)) (both 

community associations) and is highly significant 

regardless of the specification of the spatial neigh-

bourhood matrix.  

The local Moran’s I is calculated to identify po-

tential hot spots of organic farming or regions with a 

relatively low share of organic farms. Figure 3 shows 

the local indicators of spatial association (LISA) of 

Figure 3.  LISA cluster map for the share of organic farms at the community association level  

(spatial weight: first order contiguity matrix W
(1)

) 

 

Source: authors’ own calculations based on BKG (2010), BLE (2009) and SAEBL (2010) 
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organic farms for the first order neighbourhood matrix 

of the community associations at a significance level 

of p ≤ 0.05. Regions with the attributes ‘High-High’ 

and ‘Low-Low’ indicate clustering of similar high / 

low shares of organic farms in neighbouring commu-

nity associations. Striped units show regions with  

the attributes ‘High-Low’ or ‘Low-High’ indicating 

clustering of dissimilar shares of organic farms in 

neighbouring community associations. Large areas in 

the southern and north-eastern parts of Baden-

Württemberg are characterized by clusters with a very 

high share of organic farms, whereas regions in north-

ern Bavaria and north-western Baden-Württemberg 

indicate the converse situation. For the counties, the 

local Moran’s I highlights clusters with high shares of 

organic farms in southern Baden-Württemberg and 

clusters with low shares in northern and central Bavar-

ia (see Figure 4).  

First, all explanatory variables and the regional 

dummy variable are taken into account and analysed 

for the community associations. The final models are 

obtained by a step-wise selection procedure applied to  

the spatial models. Those variables lacking significant 

influence are step-by-step taken out of the spatial 

models (identified by the Lagrange Multiplier test, 

 respectively). At the same time, the Morans’s I of the 

residuals of each model is calculated to determine 

whether spatial autocorrelation is of relevance. The 

natural production factors total annual precipitation 

and the soil-index, the political proxy variables share 

of water protection areas and share of nature conser-

vation areas as well as the variables share of UAA in 

the total area and number of farms per km2 UAA are 

removed from the analysis. Also, the dummy variable 

Bavaria and the spatially lagged variables for the 

number of organic processors per 10 km2 do not show 

significant influence on the models.  

In a further analysis, we ignore the results of the 

community associations and merely consider the spa-

tial distribution of organic farms at the county level. 

Again, the number of variables is reduced stepwise 

until only significant explanatory variables remain in 

the models. The aim of this procedure is to analyse 

whether similar results can be found at the county 

level using the same database as for the community 

associations.  

For the retained models, the (robust) Lagrange 

Multiplier test (ANSELIN et al., 1996) suggests esti-

mating general spatial models or spatial lag models 

for nearly all model alternatives, respectively (Table 3). 

Figure 4.  LISA cluster map for the share of organic farms at the county level  

(spatial weight: first order contiguity matrix W
(1)

) 

 

Source: authors’ own calculations based on BKG (2010), BLE (2009) and SAEBL (2010) 
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A spatial  error model is suggested for only two speci-

fications of the inverse distance-weighted neighbour-

hood matrices at the community association level 

(W(idw30), W(idw)).  

Based on our hypothesis that there are agglomer-

ation effects in the organic sector and to allow for 

comparability with previous results, we draw on the 

spatial lag model (suggested in most Lagrange Mu-

liplier tests) in further analyses. The Morans’s I of the 

corresponding residuals indicate that spatial autocor-

relation is of relevance (e.g., for the community asso-

ciations and the first order contiguity matrix W(1):  

I = 0.2417, p = 0.00).  

Table 4 presents the results of the spatial lag 

models for the community associations and the coun-

ties. The spatial lag coefficient ρ shows a significant 

influence on the models regardless of the neighbour-

hood specification and measurement scale. For  

the first order neighbourhood matrix of the communi-

ty associations (ρ = 0.439), this implies that ceteris 

paribus, if the share of organic farms in the neigh-

bouring regions increases by one percentage point, 

then the estimated share of organic farms in the region 

will rise by 0.439 percentage points in the first step, 

i.e. without taking further feedback loops into ac-

count. If one considers potential feedback loops, the 

average direct impact of ρ (0.457) is slightly higher 

(LESAGE and PACE, 2009). Thus, spatial dependence 

seems to influence the spatial distribution of organic 

farms in the southern federal states of Germany. The 

agglomeration effects are weaker at the lower spatial 

resolution than at the community association level. As 

positive agglomeration effects result from interaction 

between farmers this finding makes sense intuitively.  

The explanatory variables exhibit significant in-

fluence on the share of organic farms with consistent 

directional influence for all model alternatives. One 

variable that is not significant in every case is the 

variable number of organic processors per 10 km2. 

For the counties, the mean annual temperature does 

not have a significant impact, too. The fewer number 

of variables remaining in the model at the lower spa-

tial resolution might be due to lower variability at the 

county level (Table 2). 

A larger distance to agglomeration centres influ-

ences the share of organic farms positively. This could 

be due to the low availability of agricultural land near 

agglomeration centres. A low number of residents per 

km2 also positively influences the share of organic 

farms maybe due to the importance of other factors 

for the distribution channels of organic products. For 

example, direct marketing has been very important in 

organic farming, requiring a spatial proximity of pro-

ducers and consumers. Now, supra-regional organic 

discounters become more important and the spatial 

location of production and consumption of organic 

products is increasingly separated.  

A high density of farms influences the share of 

organic farms negatively. We assumed that a high 

density of farms facilitates knowledge exchange be-

tween farmers; a high number of organic farms in an 

area then positively influences the propensity of con-

ventional farmers to convert to organic farming.  

However, other factors like the support of con-

sultants of organic farmers’ associations in the conver-

sion process or the agricultural farm structures might 

also be important now. The average size of organic 

farms in Bavaria and Baden-Württemberg (approx. 

Table 3. Diagnostic tests for spatial dependence 

  Community associations Counties 

  W(1) W(2) W(24nn) W(idw15) W(idw30) W(idw) W(1) W(2) W(idw) 

LM  

(spatial error) 
255.30 *** 280.80 *** 267.94 *** 318.65 *** 405.68 *** 159.81 *** 7.32 *** 0.97 n.s. 1.72 n.s. 

robust LM 

(spatial error) 
1.22 n.s. 14.99 *** 21.18 *** 3.77 * 45.77 *** 40.44 *** 0.01 n.s. 0.86 n.s. 1.19 n.s. 

LM  

(spatial lag) 
270.35 *** 290.52 *** 272.44 *** 341.06 *** 390.12 *** 139.62 *** 9.74 *** 4.29 ** 5.50 ** 

robust LM 

(spatial lag) 
16.27 *** 24.70 *** 25.67 *** 26.18 *** 30.21 *** 20.25 *** 2.42 n.s. 4.18 ** 4.97 ** 

LM (spatial  

error and lag) 
271.57 *** 305.51 *** 293.61 *** 344.83 *** 435.90 *** 180.06 *** 9.74 *** 5.15 * 6.69 ** 

*, ** and *** indicate statistical significance at the 10, 5 and 1 per cent significance level, respectively; n.s. indicates not significant 

W(1) = first order neighbourhood matrix; W(2) = second order neighbourhood matrix; W(24nn) = neighbourhood matrix identifying the 24 nearest neighbours; 

W(idw15) and W(idw30) = inverse distance weighted neighbourhood matrices considering distances up to 15 km and 30 km, respectively 

W(idw) = inverse distance weighted neighbourhood matrix 

LM = Lagrange Multiplier test  

The test results refer to the models of which the regression coefficients are given in Table 4. 

Source: authors’ own calculations based on BBR (2009), BLE (2009), BLSD (2011), DWD (2007), SAEBL (2010) and SLBW (2010) 
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Table 4.  Results of the retained spatial lag models at different spatial levels 

  Community associations Counties 

  W(1) W(2) W(24nn) W(idw15) W(idw30) W(idw) W(1) W(2) W(idw) 

Number of residents per km2 -0.0017 ** -0.0017 ** -0.0017 ** -0.0015 ** -0.0017 ** -0.0022 ** -0.0059 ** -0.0063 ** -0.0062 ** 

Average distance to the next 3 agglomeration centres (in min. by car) 0.0242 ** 0.0236 ** 0.0244 ** 0.0215 ** 0.0223 ** 0.0328 *** 0.0728 *** 0.0852 *** 0.0876 *** 

Number of organic processors per 10 km2 0.6315 * 0.6110 n.s. 0.5929 n.s. 0.5582 n.s. 0.5619 n.s. 0.7003 * 

 
 

   

  

Number of farms (ASE) per km2 -0.6779 *** -0.7138 *** -0.7131 *** -0.6150 *** -0.6407 *** -0.8201 *** -1.9541 ** -2.1171 ** -2.0626 ** 

Mean annual temperature (in °C) -0.7828 *** -0.7301 ** -0.6223 ** -0.7474 ** -0.6306 ** -0.9789 *** 

 
 

   

  

Share of votes cast for the Green Party in all valid votes cast (in %) 0.7050 *** 0.6775 *** 0.6807 *** 0.6702 *** 0.6350 *** 0.8860 *** 1.4300 *** 1.5392 *** 1.5540 *** 

Constant 2.3740 n.s. 1.7532 n.s. 0.6455 n.s. 2.0302 n.s. 0.7360 n.s. -0.9554 n.s. -11.9182 *** -13.5673 *** -16.5645 *** 

ρ 0.439 *** 0.538 *** 0.561 *** 0.529 *** 0.643 *** 0.959 *** 0.3605 *** 0.3101 * 0.6875 ** 

AIC 12888 
 

12942 
 

12958 
 

12870 
 

12919 
 

13044   656 
 

662 
 

661   

BIC 12937   12992   13007   12920   12969   13094   674   680   679   

*, ** and *** indicate statistical significance at the 10, 5 and 1 per cent significance level, respectively; n.s. indicates not significant 

W(1) = first order neighbourhood matrix; W(2) = second order neighbourhood matrix; W(24nn) = neighbourhood matrix identifying the 24 nearest neighbours; 

W(idw15) and W(idw30) = inverse distance weighted neighbourhood matrices considering distances up to 15 km and 30 km, respectively; 

W(idw) = inverse distance weighted neighbourhood matrix 

AIC = Akaike information criterion; BIC = Bayesian information criterion 

dependent variable: share of organic farms (BLE) in all farms (ASE) (in %) 

Source: authors’ own calculations based on BBR (2009), BLE (2009), BLSD (2011), DWD (2007), SAEBL (2010) and SLBW (2010) 

 

Table 5.  Spatial lag coefficient resulting from different spatial analyses of organic farming in Germany (SCHMIDTNER et al. (2012) vs. current analysis) 

 
Community associations Counties Schmidtner et al. (2012) 

 
W(1) W(2) W(idw) W(1) W(2) W(idw) W(1) W(2) W(idw) 

  y y y y y y ys ysl ys ysl ys ysl 

Number of residents per km2 x x x x x x   
 

        

Average distance to the next 3 agglomeration centers x x x x x x n.s. n.s. n.s. n.s. n.s. x 

Number of organic processors per 10 km2 x n.s. x   
  

  
 

  
 

  
 

Number of farms (ASE) per km2 x x x x x x   
 

  
 

  
 

Mean annual temperature x x x   
  

  
 

  
 

  
 

Share of votes cast for the Green Party in all valid votes cast x x x x x x n.s. x n.s. x n.s. x 

Density of organic food stores   
  

  
  

x x x x x x 

Available household income   
  

  
  

n.s. x n.s. x n.s. x 

Soil climate index   
  

  
  

x x x x x x 

Density of livestock units   
  

  
  

x x x x x x 

Total annual precipitation   
  

  
  

x x x x x x 

Share of nature conservation areas   
  

  
  

x x x x x x 

Dummy north-western Germany (=1)   
  

  
  

n.s. x n.s. n.s. x x 

Constant n.s. n.s. n.s. x x x x x x x n.s. n.s. 

ρ 0.439 *** 0.538 *** 0.959 *** 0.360 *** 0.310 * 0.688 ** 0.442 *** 0.356 *** 0.594 *** 0.585 *** 0.854 *** 0.808 *** 

x indicates statistically significant explanatory variables; *, ** and *** indicate statistical significance of ρ at the 10, 5 and 1 per cent significance level, respectively; n.s. indicates not significant 

y = dependent variable: share of organic farms (BLE) in all farms (ASE); ys = dependent variable share of organic agricultural area in total UAA; ysl = logit transformation of ys: ysl = ln(ys/(1-ys)) 

W(1) = first order neighbourhood matrix; W(2) = second order neighbourhood matrix; W(idw) = inverse distance weighted neighbourhood matrix 

Source: authors’ own presentation based on BBR (2009), BLE (2009), BLSD (2011), DWD (2007), SAEBL (2010), SCHMIDTNER et al. (2012) and SLBW (2010) 
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32 ha) is larger than all farms’ average (approx. 26 ha) 

(STATISTISCHES BUNDESAMT, 2008). Large organic 

farms might tend to be located in regions with lower 

farm density. However, the availability of organic 

processors like organic dairy enterprises seems to 

influence the share of organic farms positively in 

some models at the community association level.  

The climate variable mean annual temperature 

has a highly significant and negative influence at the 

community association level. According to our data, 

relatively cold regions like the Alpine regions have a 

high level of precipitation and a high share of grass-

land. Such grassland areas are often used less inten-

sively for animal husbandry and, thus, facilitate the 

conversion to alternative forms of agriculture like 

organic farming (DABBERT et al., 2004). 

The voters for the Green Party variable shows a 

highly significant positive influence on the share of 

organic farms. It is assumed that voters for the Green 

Party are interested in sustainable resource manage-

ment and non-monetary benefits for farmers, such  

as acceptance in the social environment, may favour 

the conversion to organic farming (MUSSHOFF and 

HIRSCHAUER, 2008).  

To identify the models that perform best in our 

research approach, we draw on the Akaike infor-

mation criterion (AIC) and Bayesian information cri-

terion (BIC). As a BIC difference of at least 10 pro-

vides strong evidence that one model fits the data 

better than another (RAFTERY, 1995), the model using 

the inverse distance-weighted neighbourhood matrix 

W(idw15) is the preferred model at the community asso-

ciation level (the model using the first order neigh-

bourhood matrix W(1) at the county level). 

Compared to the results found by SCHMIDTNER 

et al. (2012), the models at the county level show 

slightly lower spatial lag coefficients (Table 5). This 

might be because we do not analyse the spatial distri-

bution of organic farming for all German counties but 

just focus on the southern federal states; the differ-

ences between the dependent variables in the two 

studies could be another reason.  

However, the results indicate that spatial depend-

ence influences the spatial distribution of organic 

farms at the county level. 

7  Conclusions 

Our study suggests that agglomeration effects do play 

a role in the organic sector and, hence, supports the 

findings by BICHLER et al. (2005) and SCHMIDTNER et 

al. (2012). The analysis yields similar results at two 

spatial resolutions, the community association and the 

county level. The use of aggregated information does 

not distort the results of the spatial analysis; the re-

sults at the lower spatial resolution are not artificially 

generated through the aggregation process. Thus, spa-

tial dependence does not depend on spatial resolution 

in this case. The study indicates that essential aspects 

of the decision to convert from conventional to organic 

farming are also relevant at the county level. Beyond 

the scientific intention of checking the appropriateness 

of former analyses the relevance of the previous stud-

ies are strengthened by the results. To bring the analy-

sis even closer to the real decision processes of farm-

ers, a promising research approach would be to further 

increase the spatial resolution and conduct an analysis 

at the farm level (given data availability).  

The results indicate that certified organic farms 

are often located in rural areas with low farm density 

and low mean annual temperature. The characteristics 

of (climatically) disadvantaged regions seem to facili-

tate the conversion to organic agriculture. This is in 

accordance with the literature (e.g., DABBERT et al., 

2004). A favourable social and political environment 

like a high share of voters for the Green Party might 

also encourage the decision to convert to organic 

farming. Institutional, market and communication 

networks might additionally support the transmission 

of knowledge about organic farming.  

Our case study applies for Bavaria and Baden-

Württemberg, where the majority of German organic 

farms are located. To generalize the conclusions on 

spatial effects at different spatial resolutions, further 

analyses have to be conducted.  

One issue that could not be considered explicitly 

is that the varying size of the spatial units might also 

influence the spatial dependence of neighbouring units 

(ANSELIN and GETIS, 2010). A promising avenue for 

future research might be to use uniform raster cells 

and corresponding aggregated measurement scales as 

spatial units. At the moment, those data are not avail-

able for all explanatory variables used in this study. 

However, this approach could be implemented in a 

theoretical study using artificially generated datasets 

simulating the spatial distribution of organic farming 

and its explanatory variables.  

Our study uses different specifications of the spa-

tial relationship of administrative units. Regarding the 

determination of the spatial neighbourhood matrix, it 

would be interesting to take into account additional 

information such as social network structures or the 

infrastructure. Generally, the consideration and im-
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plementation of a time series could deepen the analy-

sis and enable discussions of policy implications on 

the spatial distribution of organic farming.  

To conclude, spatial dependence does not depend 

on spatial resolution in the case of organic farming in 

southern Germany.  
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Annex 

Figure A1 shows a constructed example of Simpson’s 

paradox similar to the one presented in FOTHERINGHAM 

et al. (2002). The relationship of the share of votes 

cast for the Green Party in all valid votes cast and the 

share of organic farms in all farms is expected to be 

positive due to positive agglomeration effects. It is 

assumed that voters for the Green Party are generally 

interested in alternative forms of environmental re-

source management. A high share of votes cast for the 

Green Party may form a positive socio-economic 

environment that supports alternative methods of agri-

culture such as organic farming (LAKNER, 2010). 

However, Figure A1 illustrates that results may re-

verse, depending on the measurement scale used. 

While in the example the share of organic farms is 

positively related to the share of voters for the Green 

Party if one considers two locations separately, the 

converse situation results for the aggregated data of 

both locations, i.e., for aggregated information at a 

lower spatial resolution.  
 

Figure A1. Spatial example of Simpson’s Paradox 

  

Source: authors’ own presentation based on data generated by the authors 

 

Figure A2. Connectivity of community associations at different distance bands  

 

Source: authors’ own calculations based on BKG (2010) 
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a) Spatially aggregated data
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b) Spatially disaggregated data
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