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Abstract 

The prediction of farm structural change is of large 

interest at EU policy level, but available methods are 

limited regarding the joint and consistent use of 

available data sources. This paper develops a Bayesi-

an Markov framework for short-term prediction of 

farm numbers that allows combining two asynchro-

nous data sources in a single estimation. Specifically, 

the approach allows combining aggregated Farm 

Structure Survey (FSS) macro data, available every 

two to three years, with individual farm level Farm 

Accountancy Data Network (FADN) micro data, 

available on a yearly basis. A Bayesian predictive 

distribution is derived from which point predictions 

such as mean and other moments are obtained. The 

proposed approach is evaluated in an out-of-sample 

prediction exercise of farm numbers in German re-

gions and compared to linear and geometric predic-

tion as well as a “no-change” prediction of farm 

numbers. Results show that the proposed approach 

outperforms the geometric prediction but does not 

significantly improve upon the linear prediction and a 

prediction of no change in this context.  
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Zusammenfassung 

Die Vorhersage des landwirtschaftlichen Struktur-

wandels ist von großem Interesse für die EU-Agrar-

politik, aber gegenwärtige Methoden können die ver-

fügbaren Datenquellen nicht vollständig und in kon-

sistenter Weise verwenden. Zur kurzfristigen Vorher-

sage des Agrarstrukturwandels wird ein Bayes’scher 

Markov-Ansatz entwickelt, der die Kombination von  

zwei asynchronen Datenquellen in einer einzigen 

Schätzung erlaubt. Im konkreten Fall werden dabei in 

konsistenter Weise aggregierte Daten des Farm Struc-

ture Survey (FSS), die alle zwei bis drei Jahre er-

hoben werden, mit jährlich verfügbaren Stichproben-

daten des einzelbetrieblichen Farm Accountancy  

Data Network (FADN) kombiniert. Eine geschätzte 

Bayes’sche Vorhersageverteilung erlaubt die Ermitt-

lung von Punktvorhersagen in Form des arithmeti-

schen Mittels und die Ableitung anderer Momente. 

Evaluiert wird der Ansatz in einer „out-of-sample“-

Vorhersage für die Anzahl landwirtschaftlicher Be-

triebe in verschiedenen Klassen und Bundesländern in 

Deutschland. Verglichen werden die Ergebnisse mit 

einer linearen und geometrischen Vorhersage sowie 

einer „konstanten“ Vorhersage, die keine Verände-

rungen zum letzten Beobachtungsjahr unterstellt. Im 

Vergleich zur geometrischen Vorhersage liefert der 

Ansatz bessere Ergebnisse, wobei lineare und kon-

stante Vorhersage ähnliche Ergebnisse in diesem 

Kontext liefern. 

Schlüsselwörter 

Bayes’sche Vorhersage; Markov-Übergänge; asyn-

chrone Daten; Strukturwandel 

1 Introduction 

Detailed up-to-date information about farm structural 

change is of great interest for policy makers and 

stakeholders and provides the basis for policy analy-

sis. Farm structural change relates to medium to 

long-term investment decisions to enter or leave 

the business or to fundamentally change farm 

size, specialisation or production intensity. There-

fore, modelling of farm structural adjustments in an 
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ex-ante policy modelling exercise is highly rele-

vant (ZIMMERMANN et al., 2009). The Common Ag-

ricultural Policy post 2013 (EPEC, 2013) has intro-

duced a new design of direct payments that may have 

important implications for farm structural change 

adjustments. In particular, the new basic payment 

scheme is no longer based on uneven historical refer-

ences, but rather on converging per ha payment at 

national or regional level. The change in decoupled 

support (pre- and post-2013 reform) may affect farm-

ers' decision related to entry/exit into the sector (MO-

RO and SCKOKAI, 2013). Furthermore, member states 

have the option to further adjust direct payments 

through a redistributive payment to the first hectares 

of farms. This payment provides more targeted sup-

port to small and medium-sized farms, therefore creat-

ing incentives for reducing farm size. In addition, 

member states may also grant limited coupled support 

to specific vulnerable crops, therefore changing the 

profitability of specific crops with a potential effect on 

crop composition (i.e. change in farm specialisation). 

However, the overall assessment of the impact of the 

CAP post-2013 on farm structural adjustments will 

depend on the final implementation by the member 

states. Nevertheless, most of the policy assessments 

developed at farm and farm-type levels are limited to 

the first order effect, and therefore do not take into 

account the adaptation of individual farms/farm-types 

to market and policy changes. Consequently, up-

scaling the results of the models developed at 

farm/farm-type require a prediction of the number of 

farms (and its aggregation in each farm-type) for fu-

ture scenarios.  

Apart from this more general relevance of pre-

dicting farm structural change in the context of up-

scaling results of farm models to regional level, there 

is also a specific context of the research presented in 

this paper. The "Economic Analysis of EU Agricul-

ture" Unit of DG-Agri of the EU-commission regular-

ly needs to predict farm numbers in farm size and 

specialisation classes in between the years of the Farm 

Structure Survey (FSS). The underlying research is 

funded in the context of a project aiming to improve 

the methodology for providing such rather short-term 

forecasts by using transitions observed in the sample 

of the Farm Accountancy Data Network (FADN) 

(GOCHT et al., 2013).  

Methodologically, this paper contributes to the 

literature in three ways: 1) it allows to consistently 

combine the bi- or triennial FSS data with the yearly 

FADN data in the estimation of yearly transition 

probabilities (TPs), thereby improving upon previous 

approaches with data interpolation as in ZIMMER-

MANN and HECKELEI (2012b). The approach devel-

oped in STORM et al. (2015) allows merging such 

asynchronous data sources in a single estimation ex-

plicitly reflecting their connection in the data generat-

ing process; 2) in contrast to STORM et al. (2015) a 

Parallel Tempering (PT) approach (LIU, 2008) for 

sampling from the posterior is implemented replacing 

the simple Metropolis-Hasting sampler. The PT sam-

pler converges more reliably when faced with a mul-

timodal posterior distribution; 3) we develop a Bayes-

ian prediction framework that offers a predictive dis-

tribution for the number of farms in classes from 

which point predictions and predictive uncertainty can 

be derived. 

The approach is illustrated and evaluated in an 

out-of-sample prediction for seven (West) German 

Regions for which a relatively long sample is availa-

ble. We predict farm numbers for different size clas-

ses, with and without differentiation of specialisation 

classes. Specifically, three (economic) size classes and 

an entry/exit class are considered for different aggre-

gation levels regarding farm specialisation. First, we 

perform a prediction at an aggregated level where 

farm numbers in different size classes and the en-

try/exit class are predicted without any distinction by 

farm specialisation. Then the prediction for the three 

size classes and entry/exit is repeated at a more dis-

aggregated level for three different farm specialisa-

tions, namely crop, livestock and mixed farms. In 

each case, three different time periods are considered 

in the out-of-sample prediction. The predictions based 

on the Markov approach are compared to simple con-

stant, linear and geometric predictions of farm num-

bers. 

Even though we choose seven West Germen re-

gions for illustrative purposes, it should be pointed out 

that the approach can be directly transferred to other 

EU member states for sufficiently long series of FSS 

and FADN, currently available in at least the EU-15 

member states. 

The remaining structure of the paper is as fol-

lows: the following section describes the data sources. 

Section 3 develops the estimation and prediction 

framework and derives an appropriate measure to 

assess the performance of the Bayesian Markov ap-

proach compared to its simple alternatives. Section 4 

discusses the specific implementation, including the 

setup of the out-of-sample prediction, the selection of 

explanatory variables and the implementation of the 

PT sampling algorithm. Section 5 presents the results 

and section 6 offers some concluding remarks. 
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2 Data 

FSS and FADN are the two major data sources suita-

ble for the analysis of farm structural change at EU 

level, both providing information at farm level for all 

EU member states. In this paper we aim to combine 

both data sources for a more precise prediction of 

farm structural change. The developed approach al-

lows completing information on farm numbers in size 

and specialisation classes between FSS years, and 

predicting these variables in a short- or medium-term 

time horizon. The focus here is in short-term predic-

tions (2-4 years).  

The FSS is a census of all agricultural holdings 

conducted every ten years with three intermediate 

surveys (census or sample surveys depending on each 

MS) conducted in-between (Council Regulation (EC) 

No 1166/2008). FSS data is thus available every two 

to three years offering aggregated information about 

the total number of farm holdings in different size or 

specialisation classes1. In the following, we refer to 

this aggregated data as macro data. On the other hand, 

FADN data is available on a yearly basis and provides 

information about class transitions of individual farms 

for a sample of commercial farms. Table 1 presents 

the FADN and FSS data availability at the time when 

this study was conducted. Different from FSS, FADN 

data allow tracking the development of one farm in 

the sample over several years including the movement 

of farms between classes. We will refer to this type of 

data in the following as micro data. The sample of 

FADN farms shall represent all relevant farm types 

and farm sizes in each region according to a stratified 

sampling plan2. 

                                                            
1  The individual level (micro) FSS data is processed by 

the individual member states and typically not accessi-

ble for confidentiality reasons, whereas FSS macro data 

is publically available.  
2  For each sample farm, however, a weight is calculated 

using the information in FSS about the total number of 

farms in each farm type, size class and region. With 

these weights, the FADN sample can be aggregated to 

match FSS results on the population level and infor-

mation about the total number of farms in each farm 

type or size class (macro data) can be derived. The 

weights, however, still reflect only the last available FSS 

year. 

Table 1.  Available FADN and FSS years 

Year FADN years ( t ) FSS years ( ) 

1989 0 

 1990 1 0* 

1991 2 

 1992 3 

 1993 4 1 

1994 5 

 1995 6 2 

1996 7 

 1997 8 3 

1998 9 

 1999 10 

 2000 11 4* 

2001 12 

 2002 13 

 2003 14 5 

2004 15 

 2005 16 6 

2006 17 

 2007 18 7 

2008 19 

 *Years where FSS is a full census, in other years information is 

derived based on a sample survey.  

Source: FADN and FSS data base 

Given the shorter intervals with which FADN  

data is collected and the shorter release time, FADN 

data is generally the more recent information on farm 

numbers in classes compared to FSS. Therefore, we 

might have FADN data for up to three more years 

after the last available FSS year. This paper exploits 

this information – together with all other available 

FADN micro and FSS macro data from previous years – 

to predict farm numbers in different size classes (in-

cluding an entry/exit category). 

3 Methodology 

3.1 Bayesian Estimation Framework 

Following STORM et al. (2015) the number of farms in 

different classes is modelled as a Markov process. In a 

Markov process, the movement of individuals be-

tween a finite number of predefined, mutually exclu-

sive, and exhaustive states, 1,...,i k , is a stochastic 

process. In the following we consider a situation in 

which the states represent an entry/exit and three dif-

ferent farm size classes ( 4k  ). The Markov process 

is characterized by a  k k  TP matrix tP (in the 

following bold letter denote matrices or vectors). The 

elements ijtP
 
of that matrix give the probability that an 

individual moves from state i  in 1t   to j  in t . The 
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 1k  vector tn  denotes the number of individuals in 

each state i  and develops over time according to a 

first order Markov process. 

 1t t tn P n . (1) 

In a non-stationary3 Markov process the TPs change 

over time depending on exogenous variables. The way 

the exogenous variables relate to the TPs,  P β  dif-

fers depending on the type of Markov states consid-

ered. If we assume that the Markov states do not have 

an order, the relationship between exogenous varia-

bles and TPs should be specified based on the multi-

nomial logit model, whereas an ordered logit model is 

suitable for our case where transitions between size 

classes are considered (see STORM et al., 2015). 

For the estimation of the non-stationary TPs a 

Bayesian estimation framework is employed that al-

lows combining macro and micro data in the estima-

tion of non-stationary Markov TPs. For a detailed 

description we refer to STORM et al. (2015). The gen-

eral idea of the framework is combining a macro data 

based likelihood function with a micro data based 

prior density. Both likelihood and prior are therefore 

data based and represent the two different available 

data sources in a consistent manner. Similarly as in 

STORM et al. (2015) we will combine FSS macro data, 

available every two to three years, with the FADN 

micro data, available at a yearly base.  

The prior density is combined with the likelihood 

function to a posterior density used for deriving the 

marginal density of individual parameters. Since the 

required integration is not traceable analytically, we 

employ a Monte Carlo Integration approach. STORM 

et al. (2015) use a simple Metropolis-Hastings (MH) 

algorithm to draw a sample from the posterior. Here 

we replace the MH algorithm by a Parallel Tempering 

(PT) sampling algorithm (LIU, 2008). The general 

idea of the PT approach is to run multiple copies of 

the original chain raised to different powers (in the PT 

context called “temperatures”) in parallel and allow 

exchanges between them. The advantage of the PT 

approach is that the ‘heated’ chains (raised to powers 

smaller than one) are able to escape local modes more 

easily such that it becomes easier to sample from  

multimodal posterior distributions like those found in 

the specific application.  

                                                            
3  Note that non-stationary in the Markov context de-

scribes the fact that the transition probabilities are  

allowed to differ over time depending on explanatory 

variables. 

In our particular case, we adopt the following 

setup of the PT sampler. We consider I  parallel 

chains with temperatures 1 21 ... IT T T    . The PT 

sampler consists of parallel and swapping steps. In 

each parallel step r  the current states 
     
1 2, ,...,

r r r
Ix x x  

of all I  chains are updated in simple MH steps using 

a random walk MH sample with a multivariate normal 

proposal density. After every five parallel steps a 

swap between all neighbouring chains is proposed. 

Denoting neighbouring chains as i  and 1i  , a swap 

of states 
 r
ix  and 

 
1

r

ix   is accepted with probability  

        1

1min 1,exp
i iT Tr r

i ix x 


 , (2) 

where 
  r
ix  denotes the log posterior density evalu-

ated at state 
 r
ix  of chain i . Swaps are first consid-

ered for the last two chains and then going back in 

steps to the first two neighbouring chains. With such a 

setup it is generally possible that the state of the last 

chain, 
 r
Ix , is swapped to the first chains within one 

pass through all neighbouring chains. This setup was 

found to be more efficient in our specific application 

compared to the approach proposed by LIU (2008) in 

which only one pair of neighbours are selected at ran-

dom to swap states in each step. 

The performance of the PT tempering crucially 

depends on the chosen number of parallel chains, I , 

as well as on the chosen temperatures 1 21 ... IT T T     

and the covariance matrices of the multivariate normal 

proposal densities to be selected for each specific 

sampling. The temperatures require covering a suffi-

ciently large temperature range such that the hottest 

chain can easily escape local modes. On the other 

hand, the differences between neighbouring chains’ 

temperatures need to be small enough such that a suf-

ficient amount of swaps are accepted. The specific 

implementation of the PT approach is described in 

section 4.3.  

3.2 Prediction Methods 

The Markov process specified in (1) may be directly 

used for prediction of farm numbers in different 

states. The number of farms in k  states in the last 

observed year t  is denoted by a  1k   vector tn . Our 

aim is to predict farm numbers 1
ˆ ˆ ˆ,...,t t  N n n  in k  

states for   years starting from the last observed year t . 

Taken the TPs  1,...,t t  P P P  as given, prediction 

to t   follows directly from (1) by 
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n P n . (3) 

With (3) the predicted farm number N̂  are thus a 

function of the TPs, P . The TPs are itself a function 

of the unknown parameter β , thus we can write 

    ˆ ˆ ˆ N N P β N β . The specification of the func-

tional relationship  P β  is based the ordered logit 

specification (see STORM et al., 2015). 

The Bayesian estimation framework provides 

several ways of how to implement the prediction.  

One possibility is to derive point estimates of β   

such as the posterior mean, which is the optimal 

Bayesian estimator under squared error loss. Here  

we employ an alternative prediction strategy directly 

using the sample outcomes of the joint posterior  

of β . This provides the advantage that a complete 

Bayesian predictive distribution is derived for  

each state and year in an intuitive and straight- 

forward way. Technically, each sample outcome 

  ,   1,...,l l Lβ  from the posterior is used to predict 

farm numbers based on (3) obtaining a sample of  

predictions     ˆ ˆ
l lN N β . This sample can be regard-

ed as a sample from the predictive distribution 

      ˆ ˆ
lf hN d N β β d . The predictive distribution 

may itself be the final result or alternatively summary 

statistics like mean, variance and quintiles of the  

predictive distribution may be provided from the  

obtained sample. 

3.3 Prediction Measures 

The prediction quality of the described approach is 

compared to the simple linear, constant and geometric 

prediction based on the Mean Absolute Scaled Error 

(MASE). The MASE is proposed by HYNDMAN and 

KOEHLER (2006) who argue that the MASE is superi-

or to other commonly used forecast measures such as 

the (Root) Mean Square Error (which is not scale 

free); measures based on relative errors, such as the 

Mean Relative Absolute Error, or relatives measures, 

such as the relative Mean Absolute Error. The MASE 

has a clear interpretation, is scale free and is defined 

in all relevant situations (only in the irrelevant case 

where historical data shows no variation it is not de-

fined). It is calculated by dividing the absolute predic-

tion error ˆ
t t te Y Y  , where t̂Y  is a prediction of tY , 

by the average one-step naive forecast in the sample 

period,  

 
1

11
2

i

n

t tn
i

e
MASE mean

Y Y 





. (4) 

Therefore, a MASE less than one indicates a better 

prediction than the average one-step naive forecast 

within-sample. In our specific case the MASE is cal-

culated for the predictions of farm numbers in t   

over all regions and size classes, without considering 

the artificial entry/exit class. The average one-step 

naive forecast is calculated over all observed FSS 

years. This is relevant for the interpretation of the 

absolute size of the MASE since the step-length of the 

out-of-sample prediction might differ from the step 

length of the naive one-step forecast (two or three 

years). It is, however, irrelevant for a relative compar-

ison of the MASE between different prediction meth-

ods being the primary purpose of the out-of-sample 

prediction. 

4 Implementation 

4.1 Setup of Out-of-Sample Prediction  

In the out-of-sample prediction, farm numbers are 

predicted for different size and specialisation classes. 

The classification of farms is based (in FADN and 

FSS) on economic size and specialisation classes 

(Commission Decision 85/377/EEC). The physical 

units of production (hectare or livestock units) are 

valued by the corresponding Standard Gross Margins 

(SGM) calculated for each region on a regular basis 

by the member states. The sum of all production activ-

ities valued by the SGM determines the economic size 

of a farm, expressed in Economic Size Units (ESU), 

while the share of each production activity on total 

ESU determines the farm specialisation.4  

                                                            
4  From the accounting year 2010, the typology for agri-

cultural holdings is based on Standard Output (Commis-

sion Regulation (EC) No. 1242/2008) instead of SGM. 

The main differences among the SGM and SO is that 

the SO excludes direct payments and the cost of varia-

ble inputs. Moreover, the unit used to measure SO is the 

Euro and not the Economic Size Unit (1.200 Euro). The 

change will have no effect on the general applicability 

of the proposed prediction approach. 
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In the out-of-sample prediction, four different 

situations are distinguished. On the one hand the pre-

diction is performed for all farms (excluding horticul-

ture and permanent crops TF14: 20, 31, 32, 33, 34) 

irrespectively of their farm type. Additionally, the 

prediction is repeated for three different farm speciali-

sations, namely crop farms (TF14: 12, 14, 60), live-

stock farms (TF14: 41, 44, 45, 50, 70) and mixed 

farms (TF14: 80). In principle this rather broad classi-

fication in three types can be extended but is limited 

by the increasing number of zero observations result-

ing from the increasing number of combinations of 

farm type, region, year and size class that arise when 

further differentiating farm types. In each of the four 

cases, three different size classes (small 16-40ESU, 

medium 40-100ESU and large >100ESU) and an en-

try/exit class are considered. The definition of the size 

classes is predefined by the FADN data and the only 

three size classes that can consistently used from 

1990-20075. Figure 1 illustrates the development of 

the distribution of farm number in the three size clas-

ses. The entry/exit class is an artificial class required 

by the Markov approach and representing farms that 

enter or quit farming (STOKES, 2006). It should be 

pointed out that FADN considers only “commercial 

farms” defined as those farms above 16ESU. All 

farms below that threshold are considered “hobby” 

farms in FADN and there are treated as farm exits in 

                                                            
5  For Germany FADN considered a size class from  

8-16ESU until 1997 and since 1999 FADN differentiat-

ed the “large” size class (>100ESU) in 100-250ESU and 

>250ESU. 

our analysis. Farm structural change that happens 

below this threshold remains unobserved. This needs 

to be kept in mind we interpreting the results. 

Table 2.  Out-of-sample prediction periods and 

corresponding data considered for  

estimation 

Prediction  

period 

FADN data  

considered in 

estimation 

FSS data  

considered in 

estimation 

2000-2003 1989-2003 1989-2000 

2003-2005 1989-2005 1989-2003 

2005-2007 1989-2007 1989-2005 

Source: own table 

 

For each of the four cases, three different out-of-

sample prediction periods are considered (Table 2). In 

each prediction period the last FSS year is excluded 

from estimation and macro data instead predicted for 

that year. The prediction is then compared to the ob-

served macro data. By considering three different time 

periods, each time excluding an additional FSS year in 

estimation, it can be evaluated how the approach 

would have performed in previous periods. Table 2 

presents the different prediction periods and the corre-

sponding FADN and FSS data used.  

For each individual prediction, a panel of seven 

West-German regions is considered in estimation 

(FADN regional codes: 10 (Schleswig-Holstein), 

30 (Lower Saxony, 50 (North Rhine-Westphalia), 

60 (Hesse), 70 (Rhineland-Palatinate), 80 (Baden-

Württemberg) and 90 (Bavaria)).  

Figure 1.  Distribution of farm numbers within the three size classes for each FSS year 

 
Note: regions: Schleswig-Holstein (FADN code: 10), Lower Saxony (30), North Rhine-Westphalia (50), Hesse (60), Rhineland-

Palatinate (70), Baden-Württemberg (80) and Bavaria (90). Farm types: TF14: 13,14, 41,42,43,44,45,50,60,70,71,72,80,81,82. 

Source: own illustration based on FADN data 
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These 12 different Bayesian Markov predictions 

(three time periods for each of the four cases) are 

compared to a constant, linear and geometric predic-

tion. The linear prediction employs a least squares 

estimation of 1  and 2  of the linear function 

1 2t tn t     , where tn  is the number of farms in 

time t . Using the estimates 1̂  and 2̂ , farm numbers 

for 1t   are then predicted by  1 1 2ˆ ˆˆ 1tn t      and 

for the following years accordingly. For the estimation 

only FSS macro data is employed. The geometric 

growth rate is derived by a least squares estimation of 

  1 2ln t tn t     . Farm numbers in 1t   are pre-

dicted using the estimated parameters 1̂  and 2̂  to 

calculate 
  1 2

ˆ ˆ 1
1ˆ

t
tn e

  
  . Data source and time peri-

ods are the same as those used for the linear predic-

tion. An advantage of the geometric over the linear 

prediction is that predicted farm numbers cannot be-

come negative. Problems arise, however, in the geo-

metric prediction in cases in which no farms are ob-

served in a particular time period. In these cases, the 

dependent variable is not defined, and we omit the 

observation from the estimation. The constant predic-

tion assumes that farm numbers do not change during 

the prediction period, such that the predicted value is 

equal to the last observed value for each farm type and 

region. 

4.2 Identification of Potential Explanatory 
Variables 

To select a set of explanatory variables for the estima-

tion of the non-stationary TPs, first a set of factors 

that potentially drive farm structural change are iden-

tified based on theoretical considerations and the liter-

ature analysing factors influencing farm structural 

change (BREUSTEDT and GLAUBEN, 2007; ZIMMER-

MANN et al., 2009; PIET et al., 2012; ZIMMERMANN 

and HECKELEI, 2012a; ZIMMERMANN and HECKELEI, 

2012b). The identified factors may broadly be catego-

rized in six general categories: technology, the initial 

farm structure, market conditions, natural resource 

factors, social and demographical factors and agricul-

ture policy (see Table 3). For each potential factor, 

specific explanatory variables are identified that allow 

approximating that factor.  

The model is specified as a fixed effects model 

with regional dummy variables included for each re-

gion except one. These dummy variables capture all 

time invariant factors such as the initial farm structure 

(farm size, size heterogeneity), natural conditions 

(share of absolute grassland, slope, climate, popula-

tion density etc.) that remain rather stable over the 

data period. Clearly, some of these factors also vary 

substantially within regions (e.g. slope, population 

density) which are relevant for individual farms but 

not captured in a regional level study. For off-farm 

Table 3.  Factors identified to potentially influence farm structural change and corresponding  

explanatory variables 

General Category Factors Approximated by 

Technology Yields  Index of Standard Gross Margins (SGM) for different farm specialisations.  

Specialist COP (SGM13), Specialist other filed crops (SGM14), Specialist 

Milk (SGM41), Specialist sheep/goats/cattle (SGMLive), Specialist 

Grainivores (SGM50) Source: FADN 

Initial farm structures Farm size/capacity Captured in fixed effects 

Size heterogeneity Captured in fixed effects 

Market conditions Input/output prices (price ratios) SGMs (see Technology) 

Natural resource  

factors 

Share of grassland Captured in fixed effects 

Slope Captured in fixed effects 

Climate Captured in fixed effects 

Social and  

demographical factors 

Population density/growth Captured in fixed effects 

Off-farm income opportunities Unemployment rate (Unemp) Source: DeStatis 

Age structure  Percentage of farmers aged above 60 (Above60)  Source: FADN 

Agricultural Policy Agricultural Policy Dummy variables for major policy reforms (MacSharry reform, Agenda 

2000 and Midterm review)  

Source:  BREUSTEDT and GLAUBEN (2007); ZIMMERMANN et al. (2009); PIET et al. (2012); ZIMMERMANN and HECKELEI (2012a);  

ZIMMERMANN and HECKELEI (2012b) 
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employment opportunities, the unemployment rate 

and for the age structure of the farm population the 

percentage of farmers above 60 years old are consid-

ered as explanatory variables. Agricultural policy is 

considered by three dummy variables indicating major 

shifts in EU Agricultural Policy in 1993 (MacSharry 

Reform), 2000 (Agenda 2000) and 2003 (Mid-Term 

Review). 

Technological developments as well as market 

conditions are represented by standard gross margins 

(SGM) for different production activities as explana-

tory variables. SGMs are provided by EuroStat (Com-

mission Decision 85/377/EEC) at regional level for all 

relevant production activities and member states. 

SGMs are calculated by member states based on a 

period of several years to reduce the effects of short-

term price or yield fluctuations. Therefore, SGMs 

should reflect longer-term changes in productivity as 

well as in input or output prices that affect the attrac-

tiveness of different production activities. For our 

purpose, we aggregate the different individual SGMs 

into five SGM indices reflecting major production 

specialisation activities. Specifically, SGMs indices 

are calculated for Specialist COP (SGM13), Specialist 

other filed crops (SGM14), Specialist Milk (SGM41), 

Specialist sheep/goats/cattle (SGM40) and Specialist 

Granivores (SGM50). It is assumed that the SGMs 

affect transitions of farms between classes in two dif-

ferent ways. On the one hand, SGMs reflect the 

productivity of production factors in different activi-

ties. Hence an increase of the SGM of one specialisa-

tion should increase the attractiveness of the corre-

sponding farm type. This in turn draws production 

factors and therefore farms into those farm specialisa-

tions. Also, an increase in the SGM should lead to an 

increase of the ratio of on-farm to off-farm income 

possibilities, such that farm entries/exits should in-

crease/decrease. On the other hand, changes in SGMs 

directly affect the transitions between states because 

the classification of farms in size classes depends on 

the SGMs. Therefore, changes in SGMs also have a 

direct effect on the change between classes. An in-

crease in SGM increases the economic size of a farm 

even though the physical layout stays the same; hence 

the farm would move to a higher size class. These two 

effects, movements in the physical units as well as in 

the valuation of each unit, render an interpretation of 

the causal relationship between SGM and farm struc-

tural change somewhat difficult but this is irrelevant 

for the prediction of farm numbers.  

The set of explanatory variables is further restrict-

ed using the high correlation between individual ex-

planatory variables. Particularly, three SGM indices 

(Specialist other filed crops (SGM14), Specialist 

sheep/goats/cattle (SGM40) and Specialist Granivores 

(SGM50)) are excluded because they are highly corre-

lated to the other two SGMs (Table 4). Even though 

high correlations among explanatory variables are irrel-

evant for prediction they add little to the overall ex-

planatory power of the model, and are therefore ex-

cluded in order to limit the numerical complexity which 

increases with each additional explanatory variable.  

The final set of explanatory variables use in esti-

mation thus consists of the regional fixed effects, the 

SGM for Specialist COP (SGM13) and Specialist Milk 

(SGM41) the unemployment rate (Unemp), the per-

centage of farmers above 60 years old (Above60) the 

three dummy variables for the MacSharry Reform, 

Agenda 2000 and the Mid-Term Review. Obviously, 

this set of explanatory variables is clearly limited to 

explain the complex processes driving structural deci-

sions by individual farmers. However, the choice is 

motivated by the aim to find variables that are gener-

ally available for all EU regions. Also, the rather 

broad classification of farms in three size classes and 

three farm types as well as the regional focus of the 

study limit the identification of relevant explanatory 

variables. The farm population within one class or 

Table 4.  Correlation matrix of explanatory variables 

 SGM13 SGM14 SGM41 SGM40 SGM50 Unemp Above60 

SGM13 1 0.84 -0.13 0.25 0.10 0.41 0.36 

SGM14  1 0.11 0.49 0.34 0.40 0.40 

SGM41   1 0.85 0.82 0.06 0.10 

SGM40    1 0.92 0.19 0.35 

SGM50     1 0.19 0.23 

Unemp      1 -0.16 

Above60       1 

Source: own calculation 
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region is likely to exhibit a substantial degree of hetero-

geneity such that specific explanatory variables might 

have different effects on individual farms within one 

class. For example, the estimation for “livestock” 

farms groups together specialized milk farms with 

extensive sheep farms that might react vary differently 

to specific explanatory variables. However, as 

discussed above the possibilities to consider a 

more detailed resolution with respect to size clas-

ses or farm types is limited due to data con-

straints. 

4.3 Implementation of the  
 Parallel Tempering Sampler 

For sampling from the posterior we found an 

implementation of the PT approach using 30I   

parallel chains to be suitable for delivering robust 

sample results. The selection of temperatures and 

covariance matrixes of the proposal densities 

requires a substantial amount of manual fine 

tuning for each individual estimation. Tempera-

tures are chosen such that the swap acceptance 

rate is above 20% for most of the pairs and at 

least 2-3% such that swaps between all chains are 

possible. The covariance matrices of the multi-

variate normal proposal densities are specified as 

diagonal matrices with equal variance for all 

parameters within one chain but differ across 

chains such that an acceptance rate between  

20-30% is obtained for most chains. Starting 

values for all parameters in all chains are drawn 

randomly from a uniform distribution with the 

specific support chosen for the parameter. For the 

final estimation a burn-in period of two mill. 

draws and a sample of one mill. draws are used. 

Computations are performed using Aptech’s 

GAUSSTM 12 on an Intel® Xeon® E5-2690, 

where computation time for one estimation is 

around 1.6 hours using around half of the availa-

ble CPU.  

5 Out-of-Sample Prediction  
 Results 

To assess the quality of the different prediction 

approaches different measures based on the Ab-

solute Scaled Error are considered. In the out-of-

sample prediction we obtain prediction results in 

each of the four cases for seven regions, three 

time periods and three size classes.6 For each 

single prediction, the Absolute Scaled Error is 

calculated and then summarized across predictions by 

the mean and median Absolute Scaled Error as a 

measure of central tendency as well as the standard 

                                                            
6  The prediction for the entry/exit class is not considered 

since it is a not observed artificial class (see section 3.1).  

Table 5.  Mean, 5% and 95% Quintiles of the  

marginal posterior density for the first 10 

of 64 coefficients estimated in five identical 

runs using different random starting values  

Mean of the marginal posterior density 

Coef. 1. Run 2. Run 3. Run 4. Run 5. Run 

1 -3.08 -3.01 -3.08 -3.14 -3.01 

2 0.86 0.86 0.87 0.86 0.85 

3 3.81 3.75 3.77 3.78 3.79 

4 -2.93 -2.89 -2.88 -2.95 -2.89 

5 1.02 1.02 1.02 1.03 1.01 

6 -0.58 -0.59 -0.59 -0.58 -0.60 

7 -0.64 -0.65 -0.64 -0.64 -0.64 

8 0.88 0.90 0.89 0.87 0.89 

9 1.81 1.75 1.80 1.84 1.76 

10 1.58 1.57 1.57 1.58 1.58 

5% Quintiles of the marginal posterior density 

1 -3.43 -3.52 -3.49 -3.52 -3.46 

2 0.69 0.62 0.71 0.71 0.08 

3 3.13 3.37 3.18 3.00 3.28 

4 -3.17 -3.14 -3.16 -3.16 -3.16 

5 0.73 -0.15 0.54 0.64 -0.06 

6 -0.81 -0.74 -0.74 -0.72 -0.85 

7 -0.78 -0.81 -0.78 -0.81 -0.77 

8 0.60 0.69 0.69 0.67 0.53 

9 1.25 0.54 1.43 1.44 0.83 

10 1.37 1.42 1.41 1.25 1.45 

95% Quintiles of the marginal posterior density 

1 -2.18 -1.13 -2.43 -2.41 -0.13 

2 1.19 1.08 1.15 1.33 1.01 

3 4.00 3.95 3.92 3.93 4.01 

4 -1.11 -1.32 -1.30 -1.00 -0.08 

5 1.34 1.31 1.25 1.22 1.38 

6 -0.45 -0.15 -0.47 -0.43 -0.14 

7 -0.45 -0.47 -0.49 -0.52 -0.42 

8 1.17 1.19 1.17 1.20 1.16 

9 2.01 2.03 2.03 2.06 2.01 

10 1.71 1.82 1.71 1.71 2.09 

Note: estimation is for the prediction of crop, livestock and mixed farms 

combined for the prediction period from 2005 to 2007.   

Source: own estimation 
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deviation and the 3rd quartile as measures of spread. 

The 3rd quartile is used as we are only interested in 

how far the Absolute Scaled Error deviates from zero. 

Figure 2 depicts the performance measures of the 

different prediction method for the four different cases 

considered. The Markov approach clearly outperforms 

the geometric prediction in all four cases with respect 

to all measures. Compared to the linear prediction and 

the prediction of no change the picture is less clear. 

With respect to the mean Absolute Scaled Error, the 

Markov prediction outperforms the constant and the 

linear prediction in case of ‘all’ farms and livestock 

farms while it is outperformed by the constant and 

linear prediction in case of crop farms and the con-

stant prediction in case of mixed farms. With respect 

to the median Absolute Scaled Error the Markov pre-

diction is slightly inferior to the prediction of no 

change which has either a very similar or slightly 

lower median Absolute Scaled Error. Compared to the 

linear prediction, the Markov prediction is superior 

except for the case of Livestock farms where the line-

ar prediction is slightly better. 

For an overall assessment the individual results 

of the four cases are combined to obtain an overall 

measure of the prediction quality. The results are  

given in Figure 3. The geometric prediction performs 

worst on all measures, followed by the linear predic-

tion. The Markov prediction is slightly better than the 

linear prediction and slightly worse than the constant 

prediction with respect to the mean, median and 

Figure 2.  Box-Whisker-Plot of Absolute Scaled Errors for different prediction methods in four cases  

  

  

Note: absolute Scaled Errors are displayed for each prediction in three size classes, three prediction periods and seven regions considered. 

In each case the Markov prediction is calculated as the mean of the posterior predictive distribution. 

Source: own estimation 
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3rd quartile of the Absolute Scaled Error. The Markov 

prediction has a slightly lower standard deviation 

compared to the linear and constant prediction. The 

results indicate that overall the Markov prediction is 

not able to clearly outperform the prediction of no 

change. The strong performance of the constant pre-

diction in comparison to the Markov prediction but 

particularly in comparison to the linear prediction 

indicates that the farm structure is rather stable within 

short intervals of two to three years and does not fol-

low a clear trend. 

6 Conclusion 

Overall, the paper contributes to the literature by ex-

tending the Bayesian estimation approach for non-

stationary Markov model developed in STORM et al. 

(2015) by implementing a Parallel Tempering sampler 

that allows obtaining more robust sampling results. 

Additionally, a Bayesian prediction framework is 

derived that allows obtaining a full predictive distribu-

tion from which point predictions as well as all other 

moments of the prediction can be derived. Further, by 

relying on the Bayesian approach developed in 

STORM et al. (2015) asynchronous data can be consid-

ered directly without the need of interpolating macro 

data as in previous studies.  

The motivation for the paper was a particular 

need of the European Commission to predict farm 

numbers in different classes (see the introduction sec-

tion). In this paper we addressed this need by develop-

ing a prediction approach that makes use of two data 

sources (FSS and FADN) available for the EU. The 

Bayesian Markov prediction framework consistently 

combines the two data sources and specifically ex-

ploits the advantages of each.  

The results of the out-of-sample predictions show 

that even with the combined information from the two 

data sources it is very difficult to outperform the con-

stant or linear prediction using a Markov approach. 

Overall, the three prediction methods perform very 

similar with no method clearly outperforming one 

another.  

Several conclusions and implications follow from 

a policy and scientific point of view. First, when ap-

plying sophisticated methods to predict farm structur-

al change, their performance in out-of-sample predic-

tions relative to a constant or linear prediction may 

show limited gains of prediction accuracy in the short 

term. Secondly, even the additional use of FADN 

sample data with the developed Bayesian Markov 

approach may not outperform simpler prediction ap-

proaches when the change during the period is rather 

small or follows a clear trend. Thirdly, with respect to 

the Markov estimation approach we conclude that a 

robust estimation approach to consistently combine 

FSS and FADN data is now available and may im-

prove prediction in other settings where included de-

terminants of non-stationary transition probabilities 

play a more significant role during the prediction pe-

riod.  

A limitation of the study and the performed pre-

diction is the limited set of explanatory variables in-

cluded in the Markov approach rendering it likely that 

important drivers of farm structural changes are 

missed or measured incorrectly. A further limitation is 

the broad classification of farms in three size classes 

and three farm types. Due to the diversity of farms 

within each class, it is likely that explanatory variable 

have different effects for individual farm within a 

class, which further complicates the selection and 

interpretation of explanatory variables. The number of 

size classes is predefined by the FADN data and can-

Figure 3.  Box-Whisker-Plot of Absolute Scaled 

Errors for different prediction methods 

in the out-of-sample prediction 

 

Note: Absolute Scaled Errors are displayed for a prediction of 

crop, livestock and mix farms as well as for a prediction of all 

farms combined. In each case farm number are predicted in three 

size classes, three prediction periods and seven regions. The 

Markov prediction is calculated as the mean of the posterior 

predictive distribution.  

Source: own estimation 
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not be extended for the time period used in estimation. 

The number of farm types could be extended in prin-

ciple but is limited by the increasing number of zero 

observations for particularly combination of farm 

type, region, year and size class that arise when fur-

ther differentiating farm types.  

Even though the focus of the paper is a short-

term prediction of farm numbers, we like to point out 

that the employed Markov approach is useful for other 

purposes as well. The increased data information 

compared to previous estimation procedures for Mar-

kov transition probabilities likely improves the ability 

to identify marginal effects of determinants, a chal-

lenge different from the prediction accuracy consid-

ered in this paper.  
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