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Abstract 

Greenhouse gas (GHG) mitigation is one of the main 
challenges facing agriculture, exacerbated by the 
increasing demand for food, in particular for livestock 
products. Production expansion needs to be accom-
panied by reductions in the GHG emission intensity of 
agricultural products, if significant increases in emis-
sions are to be avoided. Suggested farm management 
changes often have systemic effects on farm, therefore 
their investigation requires a whole farm approach. At 
the same time, changes in GHG emissions arising off-
farm in food supply chains (pre- or post-farm) can 
also occur as a consequence of these management 
changes. A modelling framework that quantifies the 
whole-farm, life-cycle effects of GHG mitigation 
measures on emissions and farm finances has been 
developed. It is demonstrated via a case study of sexed 
semen on Scottish dairy farms. The results show that 
using sexed semen on dairy farms might be a cost-
effective way to reduce emissions from cattle produc-
tion by increasing the amount of lower emission inten-
sity ‘dairy beef’ produced. It is concluded that a mod-
elling framework combining a GHG life cycle analysis 
model and an economic model is a useful tool to help 
designing targeted agri-environmental policies at 
regional and national levels. It has the flexibility to 
model a wide variety of farm types, locations and 
management changes, and the LCA-approach adopted 
helps to ensure that GHG emission leakage does not 
occur in the supply chain. 
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Zusammenfassung 

Die Verringerung der Emissionen von Treibhausga-
sen (THG) ist eine der wichtigsten Herausforderungen 
für die Landwirtschaft, vor allem wegen der steigen-
den Nachfrage nach Lebensmitteln, insbesondere für 
tierische Erzeugnisse. Eine Ausweitung der Produk-
tion muss von einer Verringerung der THG- Emissions-
intensität landwirtschaftlicher Erzeugnisse begleitet 
werden, um die Zunahme von Emissionen zu vermei-
den. Änderungen im Management wirken oft auf  
den ganzen landwirtschaftlichen Betrieb. Die Unter-
suchung hat diesem Umstand Rechnung zu tragen. 
Änderungen der THG-Emissionen in vor- und nachge-
lagerten Bereichen können auf Veränderungen im 
Management landwirtschaftlicher Betriebe zurückzu-
führen sein. Im Beitrag wird ein Modellierungszugang 
vorgestellt, der den gesamten Betrieb, den Lebenszyk-
lus der Produkte und Auswirkungen der THG-Minde-
rungsmaßnahmen auf Emissionen und wirtschaftliche 
Erfolgsgrößen quantifiziert. In der Fallstudie werden 
Auswirkungen des Einsatzes von gesextem Sperma in 
schottischen Milchviehbetrieben untersucht. Die Ana-
lyse zeigt, dass gesextes Sperma ein kostengünstiger 
Weg ist, um die Emissionen in der Rinderproduktion 
zu senken, und zwar durch geringere Emissionsinten-
sität der Kuppelprodukte Milch - Rindfleisch. Die Er-
gebnisse zeigen den Vorzug eines Modellierungsan-
satzes in dem eine THG-Lebenszyklus-Analyse und ein 
Betriebsmodell kombiniert werden. Dies kann dazu 
dienen, Maßnahmen der Agrarumweltpolitik auf regio-
naler und nationaler Ebene gezielt einzusetzen. Der 
Zugang verfügt über die Flexibilität, eine Vielzahl von 
Betriebstypen, Standorte und Management-Verände-
rungen zu modellieren. Die Lebenszyklus-Analyse 
hilft, allfällige THG-Leckage-Effekte in der Versor-
gungskette aufzudecken. 
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List of Abbreviations 

CH4 methane 
CO2 carbon dioxide 
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FAO UN Food and Agriculture Organisation 
FAS Farm Account Survey of Scotland 
GHG greenhouse gases 
GLEAM Global Livestock Environmental  

Assessment Model 
IPCC Intergovernmental Panel on Climate Change 
LCA life cycle analysis 
LP linear programming 
N nitrogen 
N2O nitrous oxide 

1  Introduction 

Reducing greenhouse gas emissions arising from agri-
cultural activities remains a challenge as the world is 
starting to experience the consequences of a changing 
climate (IPCC, 2013) and at the same time food pro-
duction is facing major challenges both in demand for 
land-based products and also in terms of production 
constraints (FORESIGHT, 2011). Satisfying growing 
demand for livestock products will lead to significant 
increases in the greenhouse gas emissions from the 
sector unless the emission intensity (i.e. the GHG 
emissions arising from the production of a unit of 
output, e.g. kg CO2e (litres of milk)-1) can be reduced. 

Globally, cattle milk is the largest source of  
livestock protein and global milk demand is forecast 
to increase by 80% by 2050, relative to 2005/7  
demand (ALEXANDRATOS and BRUINSMA, 2012).  
The greenhouse gas emissions arising from global 
milk production were quantified by GERBER et al. 
(2010) and increasing attention is being paid to find-
ing ways of reducing the emission intensity of milk 
production. 

Numerous management changes and technolo-
gies have been proposed to reduce on-farm emissions 
from livestock (see for example BELLARBY et al., 
2013; COTTLE et al., 2011; HRISTOV et al., 2013). A 
few measures only affect one emission source on the 

farm; for example reducing excess nitrogen fertiliser 
decreases nitrous oxide emission without any further 
implications on the other activities on farm. However, 
many measures can have system-wide effects, e.g. 
changing the ration can lead to changes in enteric 
methane emissions, changes in volatile solid and  
N excretion rates (with consequent impacts on manure 
CH4 and N2O emissions), and also changes in the 
amount of meat or milk produced. The use of whole 
farm modelling approaches provides a powerful tool 
for analysing the system-wide effects of GHG mitiga-
tion measures on emissions and farm financial per-
formance. 

In addition to the systemic effects within the farm 
outlined above, interactions can also occur along the 
supply chain. For example, changing the way in which 
inputs such as synthetic fertilisers and feed materials 
are produced can change the emission intensities of 
the final commodities produced. These effects can be 
captured by using a life cycle analysis approach in the 
evaluation of mitigation measures.  

Various whole farm models and modelling frame-
works have been developed, mostly for one or two 
particular farming systems (see reviews of the rumi-
nant systems by CROSSON et al., 2011, and SCHILS  
et al., 2007), while some are capable of simulating 
different farming systems (LOUHICHI et al., 2010; 
NEUFELDT and SCHAFER, 2008). However, LCA 
GHG calculations are rarely provided by these tools, 
therefore in this paper we outline an approach which 
is capable of simulating management changes on var-
ious farm systems to provide ex-ante evaluation of 
LCA GHG emissions and economic effects. 

The farm level modelling framework presented 
here consists of the Global Livestock Environmental 
Assessment Model, a life-cycle GHG emission model 
(MACLEOD et al., 2013) and ScotFarm, an optimising 
farm level model based on a linear programming  
farm economic model described by SHRESTHA (2004). 
Within this framework, the emissions, production and 
farm income can be calculated with and without miti-
gation measures, thus enabling the cost-effectiveness 
of measures and the interactions between the 
measures to be quantified for specific-farm systems 
and locations. 

This paper provides an explanation of the ap-
proach and a case study of sexed semen on Scottish 
dairy farms. Finally, the strengths and weaknesses of 
the approach and options for future development are 
discussed. 
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2  Methodology 

2.1  GLEAM 

GLEAM is an LCA model developed by the UN Food 
and Agriculture Organisation (MACLEOD et al., 2013). 
It simulates processes within livestock production 
systems in order to assess their environmental perfor-
mance. The current version of the model (V1.0) fo-
cuses primarily on the quantification of GHG emis-
sions and includes: (a) pre-farm emissions arising 
from the manufacture of inputs; (b) on-farm emissions 
during crop and animal production; and (c) post-farm 
emissions arising from the processing and transporta-
tion of products to the retail point. Emissions and food 
losses that arise after delivery to the retail point are 
not included. While gases of minor importance have 
been omitted, the three major GHG in agriculture are 
included, namely: (1) methane (mainly from enteric 
fermentation, manure storage and rice cultivation), (2) 
nitrous oxide (from soils and manure storage) and (3) 
carbon dioxide from (a) the combustion of fossil fuels 
on-farm (e.g. in tractors and generators) and off-farm 
(in the manufacture of inputs, including mineral ferti-
lisers, and in post-farm processing and transport) and 
(b) land use change. Carbon dioxide from the short 
biological cycles such as respiration and aerobic de-
composition are not included. GLEAM calculates: 
 total production of the main livestock commodi-

ties, i.e. meat, milk and eggs 
 the total greenhouse gas emissions arising from 

that production 
 the emission intensity of each commodity. 

A brief overview of the model elements is given below, 
and values for selected parameters given in Table 1.  

The herd module starts with the total number of 
animals of a given species and system. It determines 
the herd structure (i.e. the number of animals in each 
cohort, and the rate at which animals move between 
cohorts) and the characteristics of the average animal 
in each cohort (e.g. weight and growth rate). 

The manure module calculates the rate at which 
total excreted N is applied to crops, accounting for 
losses during storage. 

The feed module calculates key feed parameters, 
i.e. the nutritional content and emissions per kg of the 
feed ration. 

The system module calculates each animal co-
hort’s energy requirement, and the total amount of 
meat, milk and eggs produced each year. It also calcu-
lates the total annual emissions arising from manure 
management, enteric fermentation and feed produc-
tion. 

The allocation module combines the emissions 
from the system module with the emissions calculated 
outside GLEAM, i.e. emissions arising from (a) direct 
on-farm energy use; (b) the construction of farm 
buildings and manufacture of equipment; and (c) post-
farm transport and processing. The total emissions are 
then allocated to the co-products (e.g. meat and milk) 
and the EI of the commodities are calculated.  

2.2  ScotFarm 

ScotFarm, a profit optimising financial model devel-
oped at SRUC, is based on a farm level dynamic line-

Table 1.  Value of selected parameters for lactating cows  

Category Parameter Value Notes 

Ration Ration digestibility (%) 78 Calculated, based on a ration of 62% fresh grass, 
38% compound feed 

Ration Ration emissions intensity (kg CO2e (kg DM)-1) 1.4 Calculated using  IPCC (2006) Tier 1 

Intake NE requirement (MJ cow-1 day-1) 121.8 Calculated using IPCC (2006) Tier 2 

Intake Feed intake (kg DM cow-1 day-1) 15.4 Calculated using IPCC (2006) Tier 2 

Output Volatile solid excretion (VSx) (kg cow-1 day-1) 3.64 Calculated using IPCC (2006) Tier 2 

Output N excretion (kg N cow-1 day-1) 0.39 Calculated using  IPCC (2006) Tier 2 

Output Enteric methane (kg CH4 cow-1 year -1) 109 Calculated using IPCC (2006) Tier 2 

Manure Methane conversion factor (% of VSx) 6.3 Calculated using IPCC (2006) Tier 2,  
based on 68% PRP, 32% slurry (no cover) 

Manure Manure methane (kg CH4 cow-1 year -1) 13.4 Calculated using IPCC (2006) Tier 2 

Other Average annual temperature (ºC) 10 Assumption 

Other Methane conversion factor (Ym) (%) 6.5 IPCC (2006, Table 10.12) 

Other B0 (m
3 CH4 (kg VS)-1) 0.24 IPCC (2006, Table 10.A4) 

Source: authors 
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simulate the model farms and the mitigation 
measures` effect in parallel in both models. The herd 
structure, land use and feed ration composition are 
optimised in ScotFarm, and then exported to GLEAM 
(see Figure 1). 

The main conceptual differences between the 
models are summarised in Table 2. To simulate both 
the baseline farms and the mitigation options in paral-
lel in an optimisation and a static model, constraints 
are built in ScotFarm so that the farm structure of the 
baseline farm and the farm with the mitigation meas-
ure (apart from the specific changes due to the meas-
ure) is similar (i.e. the differences in grassland and 
arable land areas, herd size and feed composition be-
tween the farms modelled in GLEAM and in Scot-
Farm are not more than 5%). First the baseline farms 
are simulated in ScotFarm, and the resulting optimised 
baseline farm characteristics (land areas, number of 
cows, composition of the feed rations) are fed into 
GLEAM along with harmonised values for input pa-
rameters common to both models (e.g. milk and crop 
yields). The total production (of meat and milk) and 
GHG emissions are calculated in GLEAM and the 
farm gross margin is calculated in ScotFarm (see  
Figure 1). The procedure is then repeated for the sce-
nario with the mitigation measure. The changes in 
emissions and in the EI of products due to the mitiga-
tion measure are then calculated by comparing the 

results of the baseline scenario and the scenario with 
the measure. 

2.4  Defining Farm Types 

Farm level data was drawn from the 2010/11 Farm 
Account Survey of Scotland (SCOTTISH GOVERN-

MENT, 2011). The FAS consisted of farm level data 
from 484 farms which included physical as well as 
financial information of each of the sampled farms. A 
cluster analysis was carried out in SPSS1 to group 
farms together with similar characteristics. Seven 
farm variables (production system, farm gross mar-
gins, land, animal number, labour, feed and milk 
yield) were used to group the farms. These variables 
were assumed to be the main differences between 
farms. The Squared Euclidean Distance Method was 
used in finding similarities between the farms. This 
method is commonly used in cluster analysis when 
there are multi-dimensional variables such as farm 
variables used in this study (SOLANO et al., 2001).  

The cluster analysis resulted in fifteen farm  
types, with their main characteristics presented in 
(Table 3). These characteristics formed the basis of 
more detailed farm descriptions, which were generated 

                                                            
1  SPSS is a statistical software. More details are available 

@ http://www-01.ibm.com/software/analytics/spss/ 

Table 2.  Modelling differences between GLEAM and ScotFarm 

 GLEAM ScotFarm 

Type of model Static, deterministic calculation over  
1 year 

Linear programming pseudo dynamic optimisation model with yearly 
time-steps 

System  
boundaries 

Partial LCA: GHG emissions from 
cradle-to-delivery at retail point 

Farm gate 

Data input Primary data such as animal numbers, 
herd/flock parameters, mineral fertilizer 
application rates, temperature, etc. 
derived sources such as literature, data-
bases and surveys (see MACLEOD et al., 
2013, Appendix B). 

Farm level data such as land area, land use, animal numbers and labour 
use; and financial data such as gross margins, variable costs and over-
head costs are taken from Farm Account Survey (SCOTTISH GOVERN-

MENT, 2011). Farm coefficients such livestock units and labour re-
quirements are taken from The Farm Management Handbook (SAC, 
2012). 

Output Total annual commodity production 
(meat, milk and eggs); total GHG emis-
sions; EI of each commodity. 

Farm margins, feed rationing, herd size, land use; Total annual com-
modity production 

Dairy herd  
structure 

Six animal categories based on repro-
ductive use and sex, herd structure is 
calculated using herd parameters 

Four animal categories based on age and sex; herd structure is opti-
mised based on herd parameters and prices 

Ration Imported from ScotFarm Endogenous – the financially optimal combination of feed materials 
that can meet nutritional constraints is determined. The nutritional 
constraints are the metabolisable energy and protein requirements 
based on age and production level of individual animals (ALDERMAN 

and COTTRILL, 1993). Each of the farm groups however has to use 
concentrate diet at least 50% of level available in farm level data.  

Source: authors 
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to describe the baseline farms in terms of their crop-
ping and livestock activities, fertiliser and feed use, 
crops and livestock product yields. 

2.5  Case Study: Using Sexed Semen to 
Reduce Unwanted Male Calf Numbers 
on Scottish Dairy Farms 

In Scottish dairy herds, a proportion of the cows are 
mated, usually by artificial insemination, using dairy 
breed semen to produce replacement stock, and the 
remainder are inseminated with beef semen to provide 
dairy x beef calves that are reared for beef production. 
The use of unsexed semen leads to significant number 
of pure dairy male calves, most of which are not re-
quired for replacement, and may be uneconomic to 
rear as beef animals (ROBERTS et al., 2008). This rais-
es issues of economic and resource inefficiency and 
animal welfare. The use of sexed semen enables the 
number of cows mated with dairy semen to be re-
duced and the number of dairy x beef calves to be 
increased (see Table 4). The effect of using sexed 
semen on the emissions arising from dairy production 
and on the farm finances were investigated. 

Representing common practice in Scotland, the 
baseline farms were assumed to use artificial insemi-
nation, using dairy semen on 70% of their cows and 

heifers to produce enough female dairy calves for 
replacement (and as a ‘by-product’ dairy male calves, 
which are culled as newborns), and using beef semen 
on the remaining females to produce crossbred calves 
to be sold for rearing. With using sexed dairy semen 
the proportion of females inseminated with dairy se-
men is reduced to 40%, increasing the high-value 
crossbred calves proportion to 60%. The mitigation 
measure changes the income from the calves sold and 
the cost of the insemination in the financial model, 
and has effects on the GHG emissions from the reared 
beef cattle and on the meat produced. 
 

Table 4.  Difference between the baseline farms 
and the farms with the mitigation 
measure implemented 

Variable Baseline: 
unsexed 
semen 

With  
sexed 
semen 

Proportion of female dairy  
replacement calves 

0.35 0.35 

Proportion of male dairy calves  0.35 0.05 

Proportion of crossbred calves 0.30 0.60 

Increase in the variable cost due 
to using sexed semen (€ lu-1) 

- 11.7 

Source: authors 

Table 3.  Typology of Scottish farms generated, based on FAS 

Farm types Grass land  
(ha) 

Arable land  
(ha) 

Livestock unitsa 
(lu) 

Variable costs 
(€ lu-1) 

Labourb  
(man unit) 

Dairy large 227.9 0.0 284 229.4 2.3 

Dairy medium 99.5 11.7 137 227.7 2.1 

Beef large 234.3 15.7 222 138.1 1.7 

Beef medium 139.3 8.3 166 153.4 2.0 

Beef small 77.0 4.5 84 143.0 1.3 

Beef/Sheep large 263.5 27.9 242 151.2 2.9 

Beef/Sheep medium 93.1 4.7 106 150.5 1.6 

Sheep large 126.3 0.0 171 141.4 2.1 

Sheep medium 65.3 0.0 81 126.0 1.5 

Crop large 178.3 229.1 7 1428.6 7.5 

Crop medium 86.3 218.0 8 1151.4 2.7 

Crop small 46.6 89.0 3 1177.0 1.5 

Mixed large 145.1 92.1 162 116.5 2.1 

Mixed small 70.0 44.0 2045 112.5 1.6 

Low land Beef/Sheep  172.0 9.0 162 124.3 1.8 
a Livestock unit: (defined in terms of feed requirement) one unit equals to the maintenance of a mature 625 kg Friesian cow and the 
production of a 40-45 kg calf and 4,500 l of milk per year. 
b man unit: 2,200 working hours year-1 
Source: authors 
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The sexed semen mitigation method is only ap-
plicable on farms with dairy cattle: i.e. dairy and 
mixed farms, but it less relevant to mixed farms due to 
the much lower number of dairy cattle there, therefore 
only the medium and large dairy farms were modelled 
in this case study. The main farm characteristics are 
presented in Table 5. 

Two important parameters in the financial and EI 
reduction performance of the mitigation measure are 
the additional cost of using the sexed dairy semen and 
the assumption on the EI of the suckler beef the addi-
tional crossbred calves are replacing. Sensitivity analy-
sis was undertaken to explore the influence of these 
assumptions on cost-effectiveness.  

3   Results 

Production, GHG emission and gross margin 
data of the baseline farms and the effect of using 
sexed semen are shown in Table 6. Producing 
more crossbred calves by using sexed semen 
increased the meat production of the systems by 
47% for both medium and large dairy farms, 
while having no effect on milk production. This 
leads to an increase in the EI of the total protein 
produced, as a greater proportion of the protein 
is meat, which has a higher EI than milk. How-
ever, simply comparing the farms with and with-
out sexed semen in term of the EI per unit of 
protein is misleading, as they are producing milk 
and meat in different proportions. In order to 
compare like with like, systems expansion can 
be used to isolate the emissions attributable to 
milk only. This is done by calculating the emis-
sions that are avoided by producing beef, and 
subtracting these from the total emissions, to 
leave the emissions attributable to milk. In this 

Table 5.  Main characteristics of the modelled baseline  

Variable Medium 
dairy farm 

Large  
dairy farm 

System: Year round calving, pasture based summer grazing for eight 
months, winter housing with grass silage feed, feed supplemented with 
concentrates and minerals year round. 

Number of cows (head) 149 300 

Arable land area (ha) 11 0 

Permanent grassland area (ha) 100 228 

Milk sold (kg head-1 year-1) 6,000 7,000 

Milk price (€ l-1) 0.27 0.28 

Crossbred calves’ price (€ head-1) 100 86 

Cow weight (kg head-1) 540 

Fertility rate of cows 0.87 

Fertility rate of heifers 0.95 

Calving period all year 

Calving interval (month) 12 

Age at first calving (month) 28 

Replacement rate 0.25 

Milk wastage ratio ((milk secreted – 
milk sold) / milk secreted) 

0.09 

Suckler beef EI  
(kg CO2e (carcass weight)-1) 

30 

Source: authors  

Table 6.  Production, GHG emission and gross margin data of the dairy farms with and without  
sexed semen 

  Medium dairy farm Large dairy farm 

Baseline With SSa Baseline With SS 

Production (kg protein year-1)  Meat 3,315 4,878 6,675 9,822 

Milk 29,591 29,591 68,815 68,815 

GHG emissions for milk and meat (kg CO2e year-1) 2,144,750 2,366,120 4,559,644 5,005,356 

EI of milk and meat protein (kg CO2e (kg protein)-1) 65.2 68.6  60.4  63.7 

GHG emissions for milk only (kg CO2e year-1) 1,408,063 1,282,078 3,026,939 2,677,212 

Milk EI (kg CO2e (kg milk)-1) 1.58 1.43 1.46 1.29 

Gross margin (€ year-1) 165,284 167,128 261,569 264,120 

Effect of mitigation measure Medium dairy farm Large dairy farm 

Change in milk GHG with SS (kg CO2e year-1) -125,984 -349,727 

Change in gross margin with SS (€ year-1) 1,844 2,552 

Cost-effectiveness of SS (€ (t CO2e) -1) -14.64 -7.30 
aSS: sexed semen 
Source: authors 
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costs, therefore the mitigation measures have to be 
described according to their effects on these variables 
rather than on more detailed farm activities. Neverthe-
less, these features also provide flexibility, as data 
collection at this level is quicker and often easier than 
acquiring farm type specific detailed activity and fi-
nancial data. Therefore, the results should be inter-
preted as for the ‘typical’ farm in the modelled region 
rather than specific to one individual farm. It is also 
important to mention that the current framework does 
not capture the co-effects of GHG mitigation on other 
pollutants. These effects – especially on other types of 
reactive N (e.g. ammonia and nitrate) – can be signifi-
cant for some mitigation measures, gaining even high-
er importance in regions with high nitrogen pollution. 
Nevertheless, these linked models provide a flexible 
and consistent way of calculating mitigation cost-
effectiveness in a range of farm systems, helping to 
design better targeted regional and national policies 
for agriculture. 

The results of the case study example show that 
using sexed semen on dairy farms might be a cost-
effective way (i.e. cheaper than the shadow price of 
carbon), in some circumstances even win-win oppor-
tunity (i.e. providing financial savings to the farmers) 
to reduce emissions from cattle production. An im-
portant aspect of this GHG mitigation is that the GHG 
savings do not occur directly on the farm. High-
yielding, specialised dairy and beef systems are inter-
linked via the surplus calves in the dairy herds  
which can potentially be reared for meat and also via 
beef cross females from dairy herd becoming suckler 
cows. In the case of using sexed semen, the EI of  
the whole cattle system improves by decreasing the 
number of unwanted dairy male calves and increasing 
the amount of lower EI ‘dairy beef’ produced. The 
sensitivity analysis show that the measure stops 
 generating financial savings on the farm after the 
additional cost of administering sexed semen exceeds 
approximately 21 € lu-1. Similarly, the GHG savings 
are highly sensitive to the assumption on the emission 
intensity of the suckler beef production in the cattle 
system. The overall cost of sexed semen administra-
tion for the farmer depends not only on the cost of  
the semen but also on a number of factors related  
to fertility and herd management, like conception  
rate differences between cows and heifers, the availa-
bility of skilled personnel for the fertilisation, and the 
availability of sexed semen from high genetic merit 
sires. Providing more information and support in these 
areas to farmers would therefore increase the like-
lihood of the farmers achieving financial savings by 

using sexed semen in dairy herds. All in all, the feasi-
bility of integrating sexed semen use into the Scottish 
Government’s GHG mitigation policy should be in-
vestigated.  
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