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Abstract 

Farmers in most OECD countries are engaged in dif-
ferent activities which go beyond agriculture. When 
assessing farm performance, it is appropriate to model 
these heterogeneous farm outputs separately. In this 
study, we use the distance function approach, which 
allows the consideration of technology with multiple 
outputs and multiple inputs. We compare estimates 
from single-output technology with estimates from mul-
tiple-output technology. Our empirical analysis is 
based on an unbalanced panel of dairy farms in the 
plain region of Switzerland for the period from 2003 to 
2009. We choose the parametric estimation method and 
employ a translog specification of the production tech-
nology. The test of output separability favours a model 
that separately considers three different outputs: agri-
cultural output; para-agricultural output; and direct 
payments. The separate modelling of direct payments 
has considerable influence on the estimated technology 
parameters as well as the technical efficiency scores. 
The consideration of direct payments as a separate 
output increases the elasticity of land by a factor great-
er than two and, accordingly, reduces the distance 
function elasticities of other inputs. The average tech-
nical efficiency estimates do not differ substantially 
when specifications differ. However, we reveal serious 
differences in the estimates of technical efficiency for 
individual farms. The estimated rank correlation coeffi-
cients show that the ranking of farms in terms of tech-
nical efficiency differs considerably when direct pay-
ments are modelled as a separate output. 
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Zusammenfassung 

Landwirtschaftliche Betriebe der meisten OECD-
Länder sind in Aktivitäten involviert, welche über die 

reine landwirtschaftliche Produktion hinausgehen. 
Bei der Leistungseinschätzung der Betriebe ist es an-
gebracht, diese heterogenen Outputs separat zu mo-
dellieren. In dieser Studie nutzen wir einen Distanz-
funktion-Ansatz, welcher die Berücksichtigung von 
Technologie mit mehreren Outputs und mehreren 
Inputs ermöglicht. Wir vergleichen die Schätzungen 
von der Technologie mit einem Output mit den Schät-
zungen von der Technologie mit mehreren Outputs. 
Unsere empirische Analyse basiert auf einem un-
balansierten Panel-Datensatz, welcher Schweizer 
Milchbetriebe der Talregion von 2003 bis 2009 um-
fasst. Wir wählen eine parametrische Schätzungsme-
thode und verwenden eine Translogfunktion für die 
Spezifizierung der Produktionstechnologie. Der Test 
für die Separierbarkeit der Outputs bevorzugt das 
Modell mit separater Betrachtung drei verschiedener 
Outputs: landwirtschaftlicher Output, para-landwirt-
schaftlicher Output und Direktzahlungen. Die separa-
te Modellierung der Direktzahlungen hat einen erheb-
lichen Einfluss auf die geschätzten technologischen 
Parameter sowie auf die technischen Effizienzwerte. 
Die Berücksichtigung der Direktzahlungen als sepa-
rater Output erhöht die Elastizität des Inputs „Land“ 
um mehr als das Zweifache, während die Produktivität 
der anderen Inputs verringert wird. Die Schätzungen 
der durchschnittlichen technischen Effizienz unter-
scheiden sich nur geringfügig zwischen den Spezifika-
tionen. Jedoch zeigen sich beträchtliche Unterschiede 
in den Schätzungen der technischen Effizienz einzel-
ner Betriebe. Die Schätzungen der Rangkorrelations-
koeffizienten zeigen, dass die separate Berücksichti-
gung der Direktzahlungen zu grossen Unterschieden 
in der technischen Effizienz der Betriebe führt. 

Schlüsselwörter 

technische Effizienz; Technologie mit den mehreren 
Outputs; parametrische Output-Distanzfunktion; 
Schweizer Milchbetriebe 
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1  Introduction 

Farmers produce multiple outputs which are either 
commodity or non-commodity goods. The latter in-
clude protection of biodiversity, maintenance of rural 
landscape, etc. Agricultural policies in most OECD 
countries recognise and promote multifunctional agri-
culture. For the last two decades, the support and en-
couragement of multifunctionality in agriculture have 
been important principles on the agenda of the Com-
mon Agricultural Policy (CAP). Recent reforms of the 
CAP (The CAP post-2013) concentrate even greater 
attention on non-market items produced by farms (EC, 
2011a). Further, the CAP is aiming to support new 
economic activities for the development and competi-
tiveness of rural areas (EC, 2011b), which implies a 
further diversification of farm businesses (e.g., the 
involvement in rural tourism, on-farm direct selling, 
etc.).  

Since farm outputs discussed previously are het-
erogeneous by nature, it is appropriate to model those 
outputs separately when assessing farm performance. 
Most studies on productivity and efficiency do not 
consider this heterogeneity of outputs and, instead, 
model production technology with a single, aggregate 
output (FRANKSEN and LATACZ-LOHMANN, 2006; 
FRANKSEN et al., 2007; ABDULAI and TIETJE, 2007; 
TIEDEMANN and LATACZ-LOHMANN, 2011; KELLER-

MANN and SALHOFER, 2011). Only a few studies rep-
resent farm production technology with multiple out-
puts and multiple inputs (BRÜMMER et al., 2002; 
NEWMAN and MATTHEWS, 2007; EMVALOMATIS et 
al., 2011). 

In this study, we evaluate farm performance by 
considering the heterogeneity of produced outputs, 
and compare the results of single and multiple output 
representations of production technology. In particu-
lar, we analyse Swiss dairy farms’ productivity and 
efficiency by employing the output distance function, 
which allows the description of a technology with 
multiple outputs and multiple inputs.  

Most studies on the productivity and technical ef-
ficiency of Swiss farms use data envelopment analysis 
(DEA), which is a deterministic approach (FERJANI, 
2008; JAN et al., 2010; TODESCO et al., 2011). Only 
the studies of FERJANI and FLURY (2009) and 
BOKUSHEVA et al. (2012a) employ a stochastic repre-
sentation of the production technology. Further, most 
of the previously listed studies use a single-output 
(aggregate output) representation of the production 
technology (except for a study by TODESCO et al., 
2011). However, by employing DEA, these investiga-

tions failed to pay sufficient attention to the stochastic 
nature of agricultural production. Moreover, a single-
output representation of the technology employed in 
previous studies might be especially restrictive in the 
context of Swiss agriculture. In particular, Swiss 
farmers generate a large share of their outputs with 
direct payments1, which are outputs of a different 
nature. Furthermore, most Swiss farms are extensively 
involved in certain activities that go beyond agricul-
ture, such as direct selling, agro-tourism, and many 
more. The general term used in Switzerland for such 
activities is para-agriculture. Para-agriculture2 is an 
economic activity that is closely connected to animal 
husbandry, crop farming, and/or cultivation of agricul-
tural area (SFU, 2008). Recent investigations show 
that approximately half of all Swiss farms carry out 
one or more such para-agricultural activities (FSO, 
2007). As previous investigations on the performance 
of Swiss farms consider direct payments and para-
agriculture as parts of the aggregated output, these 
investigations might have obtained a distorted represen-
tation of Swiss farm production technology and, thus, 
produced biased estimates of technical efficiency. 

Therefore, this study contributes to the previous 
literature on productivity and technical efficiency by 
comparing estimates from single- (aggregate) and 

                                                            
1  The current system of direct payments in Switzerland 

distinguishes between general and ecological direct 
payments. General direct payments compensate farmers 
for ensuring food supplies, maintaining the landscape, 
and contributing to preserving the social structure in ru-
ral areas. These payments are based on the area of the 
farms and on the amount of grazing animals. Ecological 
direct payments remunerate farmers for particular ser-
vices, such as the creation of valuable habitats for ani-
mals and plants. These payments are paid, for example, 
for managing extensive meadows, and permanent flow-
ery meadows, for organic farming, etc. (FOAG, 2004). 

2  To take into account the para-agricultural output of farms, 
the Swiss farm accountancy data network (FADN) dis-
tinguishes among four different farm outputs, which in-
clude agricultural output (output from agricultural activ-
ities), direct payments, output from para-agriculture, and 
output from non-agricultural (off-farm) activities. If pa-
ra-agricultural revenue does not exceed 5,000 Swiss 
francs, this output is accounted for as agricultural output. 
On the other hand, if the revenue from para-agricultural 
activities is more than 250,000 Swiss francs, this output 
belongs to non-agricultural (off-farm) activities (SCHMID 
et al., 2010). Please note that in this definition of the 
output variables the same agricultural activity could be 
counted toward different output categories. However, it 
is not possible to get a more adequate indicator of “para-
agricultural” activities in the Swiss FADN. 
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multiple-output representations of the production 
technology. We analyse Swiss farms’ performance by 
considering the heterogeneity of their outputs and the 
stochastic nature of agricultural production. The sto-
chastic distance function approach employed in this 
study should allow for a more adequate representation 
of Swiss farms’ production technology and for appro-
priate estimates of technical efficiency. An additional 
study objective is to determine factors that explain the 
variation of technical efficiency in the farms studied.  

The remaining parts of the paper are organised as 
follows. In the next section, we provide a short de-
scription of the distance function and its estimation 
techniques. Section 3 describes the data and illustrates 
the econometric specification of the models employed 
in this study. We present and discuss the results in 
Section 4. Finally, we summarise the main findings of 
this study in Section 5. 

2  Methodology 

2.1 Distance Function Approach 

Our analysis uses the distance function approach, 
which provides a valuable framework for the repre-
sentation of multi-input multi-output technology. Fur-
thermore, the distance function approach allows for 
the specification of the technology without the need to 
make behavioural assumptions, such as cost-
minimization or profit-maximization (COELLI et al., 
2005).  

Depending on the focus of the study, researchers 
can choose between input and output distance func-
tions. An input distance function measures the maxi-
mum amount by which input usage can be radially 
reduced but still remain feasible to produce a given 
vector of outputs. An output distance function defines 
the minimum amount by which an output vector can 
be deflated while remaining producible with a given 
input vector (COELLI et al., 2005). 

In this study, we use the output distance function. 
This function is defined on the output set, P(x), as the 
minimum amount by which outputs can be deflated 
and still be technologically feasible by given inputs: 	ܦሺ࢞, ሻ࢟ ൌ minሼߜ: ሺߜ/࢟ሻ ∈ ܲሺ࢞ሻሽ,		  (1) 

where x denotes the vector of inputs, and y is the vec-
tor of outputs (COELLI et al., 2005: 47).  

Distance functions can be used in measuring 
technical efficiency. Farrell output-oriented technical 
efficiency (TE) is defined as the maximum propor-

tional increase in outputs holding inputs fixed. The 
output distance function and Farrell output-oriented 
technical efficiency are related as follows: ܶܧ ൌ ,࢞ሺܦ/1  ሻ.  (2)࢟

The resulting technical efficiency scores are greater 
than 1. Following the empirical literature, we report 
the efficiency scores rescaled on the unit interval by 
taking the inverse of expression (2). 

2.2 Estimation Methods 

There are two principal methods for estimating the 
production and distance functions: data envelopment 
analysis (DEA) and stochastic frontier analysis (SFA). 
DEA is a non-parametric approach that uses linear 
programming methods for the construction of a piece-
wise surface (or frontier) over the data. This method 
does not require knowledge of the algebraic form of 
the production frontier (COELLI et al., 2005: 162). 
DEA considers the production to be deterministic and, 
thus, does not regard the possibility of noisy data by 
assumption. All deviations from the frontier are con-
sidered as inefficiency in DEA. However, it is good to 
mention that recent developments in DEA also allow 
for modeling noise in the data. The proposed ap-
proaches involve bootstrap strategies to analyse the 
sensitivity of efficiency scores (SIMAR and WILSON, 
2000; GOCHT and BALCOMBE, 2006; HALKOS and 
TSEREMES, 2012) as well as constrained programming 
often referred to as stochastic data envelopment analy-
sis (SDEA) (LAND et al., 1993; OLESEN and PETERSON, 
1995; COOPER et al., 2002). 

SFA is a parametric estimation method that as-
sumes a given functional form for production and 
distance functions. The unknown parameters of the 
function have to be estimated by using econometric 
techniques (COELLI et al., 2005: 242). In the econo-
metric estimation of distance functions, one of the 
outputs (in the output distance function) or inputs (in 
the input distance function) is factored out, and thus, 
the distance function is converted in an estimable 
regression model. The resulting model can be estimat-
ed by using conventional SFA. The general problem 
in estimating distance functions is that outputs (or 
inputs), which are used as regressors, may not be ex-
ogenous. In the context of the output distance func-
tion, BRÜMMER at al. (2002) discuss the advantages of 
“ratio” models (where output mixes appear as regres-
sors) over “norm” models (where regressors are out-
put variables scaled to unit length) and argue that the 
problem of endogeneity might be less severe when an 
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output mix is used. In general, endogeneity problems 
appear not only in the econometric estimation of dis-
tance functions but also in production functions. Sev-
eral authors discuss the endogeneity problem in the 
econometric estimation of production technology and 
use the generalised method of moments (GMM) ap-
proach to tackle this issue (ROIBAS and ARIAS, 2004; 
ATKISON and DORFMAN, 2005; BOKUSHEVA et al., 
2012b). Other authors employ the Bayesian solution 
to the endogeneity problem (FERNANDEZ et al., 2000; 
O’DONNELL, 2011). Recently, O’DONNELL and NGU-

YEN (2011) suggest constructing a quantity index and 
factoring it out, resulting in a stochastic frontier model 
with uncorrelated regressors. 

3  Data Description and  
Empirical Specification 

Our investigation relies on a subsample of the Swiss 
FADN sample. We use unbalanced panel data for 
Swiss dairy farms from 2003 to 2009. Our subsample 
consists of conventional farms that are located in the 
plain region of Switzerland. In order to ensure that the 
analysed farms have similar production structures, we 
employed the following selection criteria: a) no part-
time farming (off-farm income is less than 50%); b) 
the share of output from para-agriculture in total farm 
output is less than 50%; and c) the number of live-
stock standard-units is more than 20 but fewer than 
60. As a result of this selection, the total number  
of observations is 927, which is 132 observations p.a., 
on average. The sample farms own an average of  
32 livestock standard units and 24 ha of agricultural 
land.  

The total output of farms is approximated by the 
so-called ‘Rohertrag’, which is the Swiss equivalent 
for the farm’s revenue from agricultural production. 
This indicator of farm output consists of gross revenue 
from agricultural activities, gross revenue from para-
agricultural activities, and direct payments. We speci-
fy three different models subject to the level of aggre-
gation of single-output categories. 
(1) First, we estimate the output distance function 

with one output (ODF1), where all outputs are 
aggregated into a single farm output (total out-
put). This total output includes agricultural out-
put, para-agricultural output, and direct pay-
ments. 

(2) The second model is formulated as an output 
distance function with two outputs (ODF2): out-
put 1 includes agricultural output and direct 

payments, and output 2 is defined as para-agri-
cultural output. 

(3) In the third model, we define technology as the 
output distance function with three outputs 
(ODF3): agricultural output, para-agricultural 
output, and direct payments.  

In all three models, we use the same input variables. 
The vector of inputs contains: (1) land measured in 
hectares of farm area; (2) labour measured by man-
year standard units (including both farm and hired 
labour); (3) livestock measured in standardised live-
stock units; (4) capital defined as the depreciation 
value of machines and buildings (in Swiss francs); (5) 
materials measured as costs of intermediate inputs (in 
Swiss francs); and (6) feed measured as costs of pur-
chased feed (in Swiss francs). The summary statistics 
of the variables used are given in the appendix, Table 
A1.  

Outputs and inputs measured in monetary units 
were deflated by using appropriate price indices. For 
agricultural output, we use the producer price index of 
agricultural products. Direct payments and output 
from para-agriculture are deflated by employing the 
consumer price index. To deflate capital values, we 
use the investment price index for agricultural goods. 
The purchase price indices of intermediates are used 
to adjust the values of the costs of the variable inputs3.  

We normalise all variables by their geometric 
sample mean. This procedure facilitates the conver-
gence of the likelihood function (BRÜMMER et al., 
2002) and simplifies the calculation of elasticities at 
the sample mean. 

As mentioned previously, in the case of a para-
metric estimation, it is necessary to assume an appro-
priate functional form to represent production tech-
nology. In this study, we employ the output distance 
function with translog specification:  ln ,࢟௧ைሺܦ ,࢞ ሻݐ ൌ 		 ߙ 	∑ ௧ெୀଵݕlnߙ	 ଵଶ∑ 	ெୀଵ ∑ ௧ெୀଵݕ௧lnݕln	ߙ  ∑ ௧ୀଵݔln	ߚ 	ଵଶ ∑ 	ୀଵ ∑ ௧ୀଵݔ௧lnݔln	ߚ 	∑ 	ୀଵ ∑ ௧ெୀଵݕ௧lnݔln	ߜ  ݐ௧ߝ 	ଵଶ		ߝ௧௧ݐଶ 		 ∑ 	ୀଵ ݐ௧ݔln	௧ߠ ∑ ߱௧	lnݕ௧ݐெୀଵ 	 .																																																								ሺ3ሻ  

                                                            
3  The price indices were provided by the Swiss Federal 

Office of Agriculture (FOAG, 2011), the Swiss Farmers’ 
Union (SFU, 2011) and the Swiss Federal Statistical  
Office (FSO, 2011). 



All rights reserved www.gjae-online.de

GJAE 63 (2014), Number 1 

20 

In equation (3), i is the farm index, k and l denote 
different inputs, m and n are the output indices, and t 
denotes time.  

The output distance function is linearly homoge-
neous in outputs (COELLI et al., 2005: 47). We impose 
the homogeneity restriction by normalising the dis-
tance function in (3) by one of the outputs. This trans-
formation enables the econometric estimation of a 
distance function (KUMBHAKAR and LOVELL, 2000). 
We normalise by output y1. Dividing all outputs by y1, 
setting െlnܦ௧ை	 ൌ  ௧, and adding the white noise errorݑ
term (vit) leads to the following expression 
(KUMBHAKAR and LOVELL, 2000; BRÜMMER et al., 
2002; NEWMAN and MATTHEWS, 2007):  െln	ݕଵ௧ ൌ	ߙ 		∑ ௬௬భ	lnߙ	 			ெୀଶ ଵଶ∑ 	ெୀଶ ∑ ௬௬భ	ln	ߙ 				ln ௬௬భ		ெୀଶ  ∑ ௧ୀଵݔln	ߚ 	ଵଶ ∑ 	ୀଵ ∑ ௧ୀଵݔ௧lnݔln	ߚ 	∑ 	ୀଵ ∑ ௬௬భ	ln		௧ݔln	ߜ 				ெୀଶ  ݐ௧ߝ 	ଵଶ		ߝ௧௧ݐଶ 		 ∑ 	ୀଵ ݐ௧ݔln	௧ߠ ∑ ߱௧	ln	௬௬భ 	ݐ				 ெୀଶݒ௧	    				ሺ4ሻ																																																																								.		௧ݑ

Thus, the composite error term of the  
resulting model involves measurement error ݒ௧	~	ܰ൫0, ௩,௧ଶߪ	 ൯	and a non-negative technical ineffi-
ciency component uit. We use a half-normal model, 
which assumes that the inefficiency component  
follows a half-normal distribution, uit ~ N+(0, ߪ௧ଶ). 
Additionally, we assume that both v and u are hetero-
scedastic, meaning that their variance is not constant 
but can be explained by several exogenous variables 
(KUMBHAKAR and LOVELL, 2000): ݒ௧	~	ܰ൫0, ௩,௧ଶߪ	 ൯	݄ݐ݅ݓ		ߪ௩,௧ଶ ൌ expሺ࢙௧, ,ܰା൫0	~	௧ݑ   (5)	ሻࣈ ௨,௧ଶߪ	 ൯	݄ݐ݅ݓ		ߪ௨,௧ଶ ൌ expሺࢠ௧,  ሻ (6)ࢽ

where s and z are vectors of farm characteristics  
(q and p are indices for different farm characteristics), 
and ࣈ and ࢽ are parameter vectors to be estimated. 

To investigate the marginal effects of farm char-
acteristics (exogenous variables) on farms’ technical 
efficiency, we follow a model proposed by WANG 

(2002). This model assumes that the inefficiency term 
uit follows a truncated normal distribution with mean 
μit and variance ߪ௧ଶ  (uit ~ N+(μit, ߪ௧ଶ)). The authors 

parameterise both the mean and variance of the ineffi-
ciency component as follows (WANG, 2002): ߤ௧ ൌ ௨௧ଶߪ (7) 	,ࢾ௧ࢠ	 	ൌ expሺࢠ௧	ࢽሻ. (8) 

In this model, ࢠ௧	 denotes the vector of variables 
(several farm characteristics) which are associated 
with the inefficiency of farms, and δ and γ are the 
corresponding parameter vectors to be estimated. 
Since we use a half-normal model, our model is a 
special case of the model proposed by WANG (2002) 
and is obtained by substituting zero for δ in (7). 

The marginal effect of z variables on the ex-
pected value of inefficiency E(uit) is (Wang, 2002): 			߲ܧሺݑ௧ሻ∂ݖ ൌ ߛ ௧ଶ2ߪ ቈ	߶ሺΛሻΦሺΛሻ	.																																							ሺ9ሻ	 
The marginal effect of z variables on inefficiency 
variance V(uit) is (WANG, 2002):  

		∂ܸሺݑ௧ሻ∂ݖ ൌ ௧ଶߪߛ ൝	1 െ 	ቈ߶ሺΛሻΦሺΛሻଶ	ൡ.																								ሺ10ሻ 
In expressions (9) and (10), E denotes the expected 
value, V is the variance, ߛ	is the parameter associated 

with z, Λ ൌ  ,௨௧ (in our case, Λ is equal to zero)ߪ/௧ߤ
and ߶ and Φ are the probability and cumulative densi-
ty functions of the standard normal distribution,  
respectively.  

Following the empirical literature, we employ 
several farm characteristics to explain heteroscedastic 
uit and to test hypotheses regarding the influence of 
these characteristics on farm technical efficiency: 
 (z1) farmers’ age. We expect that age has a nega-

tive effect on technical efficiency. Recent studies 
on Swiss farms (FERJANI, 2008; JAN et al., 2010) 
find a negative influence of this variable. The em-
pirical literature reports dissimilar results regard-
ing the impact of age on the technical efficiency 
of farms. The negative impact (BRÜMMER and 
LOY, 2000; KARAGIANIAS et al., 2006; THIRTLE 

and HOLDING, 2003; HADLEY, 2006) is often ex-
plained by the fact that older farmers tend to have 
less motivation to adopt new technologies. The 
positive impact of this variable (WILSON et al., 
2001; O’NEILL and MATTHEWS, 2001; MATHIJS 
and VRANKEN, 2001; BARNES, 2006) is associat-
ed with being more experienced. 

 (z2) farmers’ education. We hypothesise that  
education positively influences farm technical 
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efficiency. Farmers with a higher educational level 
are often found to perform better, since they might 
make better use of inputs, adopt new technology 
faster, etc. (LIU and ZHUANG, 2000; WILSON  
et al., 2001; O’NEIL and MATTHEWS, 2001; 
MATHIJS and VRANKEN, 2001; IGLIORI, 2005). 
However, other studies (JAN et al., 2010; GOOD-

WIN and MISHRA, 2004; BARNES, 2006; LAKNER, 
2009) do not observe any significant impact of 
this variable on technical efficiency. 

 (z3) share of rented land. We hypothesise a nega-
tive impact of this variable on technical efficien-
cy. The empirical literature shows that farmers 
tend to manage their own land more efficiently 
(MATHIJS and VRANKEN, 2000; THIRTLE and 
HOLDING, 2003; HADLEY, 2006). 

 (z4) share of hired labour. We expect a negative 
influence of this variable on technical efficiency. 
In line with the principal agent theory, farms with 
a higher level of hired employees are expected to 
have higher transaction costs (e.g., for control-
ling). Consequently, this might lead to a lower 
technical efficiency of these farms. Results con-
firming this hypothesis are reported by MATHIJS 

and VRANKEN (2000), KARAGIANNIS et al. (2006), 
and CABRERA et al. (2010). 

 (z5) share of off-farm income in total farm in-
come. We expect a negative effect of off-farm 
employment on technical efficiency, because  
it might distract the farmer’s attention from his 
main activity - agricultural production. Farmers 
with more off-farm work could have lower moti-
vation and less time available for farming. This 
hypothesis (negative influence) is confirmed in 
several studies (O’NEILL and MATTHEWS, 2001;  
BRÜMMER et al., 2001; GOODWIN and MISHRA, 
2004; JAN et al., 2010). Other studies (HUFFMAN 
and EVENSON, 2001; MATHIJS and VRANKEN, 
2001; TONSOR and FEATHERSTONE, 2009), how-
ever, report positive influence of this variable on 
technical efficiency. 

 (z6) share of para-agriculture in total farm output. 
We expect a positive effect of para-agriculture on 
technical efficiency. These activities might require 
lower input use per unit of output, and, thus, farms 
with higher share of para-agriculture could be 
more efficient. JAN et al. (2010) find positive im-
pact of increasing para-agricultural activities on 
the technical efficiencies of dairy farms located in 
the mountainous region of Switzerland. 

 (z7) ecological direct payments. We hypothesise a 
negative effect of ecological direct payments on 
technical efficiency. Farms receiving higher pay-
ments are strongly dependent on the support from 
policy instruments. This might lead to lower tech-
nical efficiency of such farms. The empirical liter-
ature reports contradictory results regarding the 
influence of direct payments on farms’ technical 
efficiency. While FERJANI (2008) shows a nega-
tive relationship between direct payments and the 
technical efficiency of Swiss farms, the study by 
JAN et al. (2010) find this relationship to be posi-
tive. LAKNER (2009) observes lower efficiency 
scores for German milk farms, which receive 
higher agri-environmental payments. 

 (z8) altitude of the farmland. We suppose that 
increasing altitude aggravates production condi-
tions and, hence, negatively influences technical 
efficiency. For example, the study by BRÜMMER 

and LOY (2000) supports this hypothesis. The 
study of JAN et al. (2010) also observes a negative 
impact of altitude on the technical efficiency of 
Swiss farms in the mountainous region. It is obvi-
ous that the influence of altitude is more pro-
nounced there than in the plain region of Switzer-
land. However, we still test the influence of this 
variable in our analysis, because the altitudes of 
the farms in our sample (farms in the plain region) 
vary from 350 to 1,050 metres above sea level. 

Additionally, we use logged inputs (z9-z14) as well as 
log output ratios (z15-z16) as explanatory variables of 
heteroscedastic uit.  

For the heteroscedasticity in the noise compo-
nent, vit, we include eight variables (s1-s8): age, edu-
cation, rented land, share of hired labour, share of off-
farm income, share of para-agriculture, ecological 
direct payments, and altitude. 

4  Results and Discussion 

4.1 Testing 

As mentioned in the previous section, we estimate 
three different models (ODF1, ODF2, and ODF3). In 
order to identify whether it is appropriate to have one, 
two, or three outputs, we conduct separability tests. If 
the production technology is separable in outputs, then 
it is appropriate to aggregate different outputs into a 
single output. Several authors discuss the test for the 
separability of the translog functional form. Earlier 
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empirical literature uses the Berndt-Christensen 
(BERNDT and CHRISTENSEN, 1974) framework to test 
for separability. However, the Berndt-Christensen test 
is a joint test of weak separability and the linear loga-
rithmic aggregator function (BLACKORBY et al., 1977; 
WOODLAND, 1978). The imposition of the parametric 
restrictions to the translog function adds further struc-
ture to the function by requiring the aggregator func-
tion to be linear logarithmic (WOODLAND, 1978). As a 
solution, WOODLAND (1978) suggests working with a 
variable profit function rather than a production func-
tion, and formulating the test for separability by re-
quiring all cross-terms between inputs and outputs to 
be equal to zero. In this way, the existence of an ag-
gregator may be tested without further unwanted 
structure being imposed (WOODLAND, 1978: 385). 
The same test is applicable in testing separability in 
the output distance function (IRZ and THIRTLE, 2004; 
NEWMAN and MATTHEWS, 2007). Thus, we test the 

hypothesis of separability by imposing the following 
restriction on expression (4):	ߜ ൌ 0. Table 1 presents 
the results of testing the ODF2 and ODF3 models. 

In all cases, separability (i.e., null-hypothesis  
that cross-terms between inputs and outputs equals 
zero) is strongly (at 1% significance level) rejected, 
confirming that it is not appropriate to aggregate  
different outputs into a single output. Thus, the out-
come of these tests justifies the use of the distance 
function rather than the production function for the 
technology representation of the sample farms. More-
over, according to our results, it is better to consider 
the three different outputs separately. Therefore, we 
choose the ODF3 model, and most parts of the follow-
ing results and discussions apply to preferred model.  

Next, we test for heteroscedasticity in the error 
terms. Table 2 presents the results of three likelihood 
ratio tests for heteroscedasticity: (i) in both u and v; 
(ii) only in v; and (iii) only in u. 

Table 1.  Results of the likelihood ratio test* for separability 

 Log  
likelihood 

Likelihood 
ratio (λ) 

Critical value 
(1%) 

Outcome 

Hypotheses for ODF 2     

HA:   Full model (with all cross terms) 710.37    

H01:  Coefficients of all cross terms  
between y2 and inputs equal to zero  

693.62 33.50 16.81 Reject H0 

Hypotheses for ODF 3     

HA:   Full model (with all cross terms) 936.97    

H01:  Coefficients of all cross terms  
between y2 and inputs equal to zero 

915.33 43.28 16.81 Reject H0 

H02:  Coefficients of all cross terms  
between y3 and inputs equal to zero 

897.17 79.60 16.81 Reject H0 

H03:  H01 and H02 876.58 120.78 26.22 Reject H0 

*The likelihood ratio statistic is computed as follows: λ = -2 [LL (H0) - LL (HA)], where LL(H0) is the value of the log-likelihood func-
tion under a null hypothesis (restricted model), and LL(HA) denotes the log-likelihood function under an alternative hypothesis (un-
restricted model). 
Source: Authors’ calculations 

Table 2.  Results* of the likelihood ratio test for heteroscedasticity in v and u 

Hypotheses Log  
likelihood 

Likelihood 
ratio (λ) 

Critical  
value (1%) 

Outcome 

HA: Double heteroscedasticity (in v, in u) 936.97    

H0i: Homoscedasticity in both v and u 831.41 211.12 42.98 Reject H0 

H0ii: Homoscedasticity in v (and heteroscedasticity in u) 916.76 40.42 20.09 Reject H0 

H0iii: Homoscedasticity in u (and heteroscedasticity in v) 835.59 202.76 32.00 Reject H0 

* Presented results are for the ODF 3model. We conducted the same tests for the ODF2 and ODF1 models, and double heteroscedasticity 
was preferred in those models, too.  
Source: Authors’ calculations 
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All three null hypotheses (homoscedasticity in 
both v and u; homoscedasticity in v; and homoscedas-
ticity in u) are rejected at 1% significant level. These 
results imply the presence of technical inefficiency 
effects in this study and, in addition to that, justify 
using the double heteroscedasticity model. 

4.2  Parameter Estimates 

In this chapter, we report the results of an estimated 
distance function with three different outputs (the 
ODF3 model)4. As we normalise all variables by their 
sample means, the first-order estimates in our translog 
models can be interpreted as elasticities at the sample 
mean. Table 3 summarises the distance elasticities, the 
elasticities for inputs, and the returns to scale. 
In the distance function models, the coefficient esti-
mates with respect to the output show the relative 
contribution of single outputs to the distance function 
value. According to the estimates, an increase of the 
agricultural output by 1% increase the value of the 
distance function by 0.524% ceteris paribus. Para-
agriculture and direct payments increase the distance 
function by 0.006% and 0.470%, respectively. Fur-
thermore, under revenue maximization, the output 
distance elasticities should be equal to the revenue 
shares of the corresponding outputs (BRÜMMER et al., 
2002). The estimated elasticities for agricultural out-
put (0.524) as well as for para-agriculture (0.006) are 

                                                            
4  We give parameter estimates from all three models in 

the appendix, Table A2. 

a bit low, as the average shares of agricultural output 
and para-agriculture are 78% and 3.3%, respectively. 
On the other hand, the estimated elasticity of direct 
payments (0.470) is much higher than the share of this 
output (18.2%). This might be connected to the fact 
that the “production” of some part of direct payments 
(especially general direct payments) does not require 
any inputs or trade-offs with other outputs. Thus, 
these results suggest a strong influence of direct pay-
ments on farm production decisions.   
All first-order terms of input variables (land, labour, 
capital, animals, intermediates, and feed) are signifi-
cant at the 1% level. We found relatively high elastici-
ties for land and livestock, suggesting that these two 
inputs contribute the most to production. Table 3 
shows that the production technology exhibits returns 
to scale over one. The null hypothesis of constant 
returns to scale is rejected at a 5% level, suggesting a 
variable return to scale at the sample mean.  
Further, the elasticities of single inputs differ signifi-
cantly in the three considered specifications (cf. esti-
mates in Table A2). In the first and second specifica-
tions, the elasticities of inputs are very similar, where-
as the model with three different outputs shows anoth-
er picture. The ODF3 model reveals the estimated 
elasticity of land to be higher than that in the other 
two models. This rise in elasticity with respect to land 
in the ODF3 model leads to the particularly lower 
elasticities of other inputs. This result, again, suggests 
that the producers’ resource allocation and factor re-
muneration might be completely different when direct 
payments are considered as a separate output. 

Table 3.  Elasticities of distance function and returns to scale  

Elasticities at sample mean Significance1 Standard error 

Agricultural output** 0.524   

Para-agricultural output 0.006 *** 0.002 

Direct payments 0.470 *** 0.026 

Land 0.390 *** 0.041 

Labour 0.124 *** 0.035 

Capital 0.097 *** 0.020 

Livestock 0.361 *** 0.046 

Intermediates 0.079 *** 0.025 

Feed 0.048 *** 0.015 

Returns to scale 1.100 ** 0.181 
1  *** significant at 1% , ** significant at 5%, * significant at 10% , n. s. not significant. 
2 The distance elasticity of agricultural output, y1 is: ߝ௬భ ൌ 1 െ ∑ ௬ெୀଶߝ	 .  

This follows from the homogeneity restriction: ∑ ୫ߙ ൌ 1,m ൌ 1, 2, … ,M.  
Source: Authors’ calculations 
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We check the theoretical consistency of the em-
ployed distance function. For most functional forms 
applied in economic analysis, there is a trade-off be-
tween flexibility and theoretical consistency (SAUER 
et al., 2006). Since the translog function (which is a 
flexible functional form) fails to satisfy monotonicity 
and curvature globally, it is appropriate to check these 
conditions locally (MOREY, 1986; SAUER et al., 2006).  

The monotonicity is fulfilled at the sample mean: 
the estimated distance function is non-increasing in all 
inputs (as indicated by the elasticities of distance 
function with respect to k inputs) and non-decreasing 
in all outputs (as indicated by the elasticities with 
respect to m outputs). Additionally, we test whether 
the output distance function was convex in outputs. 
For this we evaluate Hessian matrix of outputs: ܪ௨௧௨௧ ൌ ቂെ0.005 	0.005			0.005 െ0.665ቃ. Since both Eigenvalues 

are negative, we conclude that convexity is not satis-
fied for the estimated distance function (Hessian ma-
trix was expected to be semi-positive). This implies 
that the reported results on the estimated parameters 
should be taken with caution. Furthermore, the theo-
retical inconsistency has also consequences with re-
gard to the estimated technical efficiency. The viola-
tion of convexity means that the estimated function 
does not represent the maximal possible output com-
bination at each point. Therefore, this would possible 
lead to an overestimation of technical efficiency 
scores of some farms. 

4.3 Technical Efficiency 

The results of this study reveal the mean technical 
efficiency for sample farms to be 0.95 (estimated with 

the ODF3 model). The efficiency scores range from 
0.71 to 1.00 (standard deviation = 0.04). 

The mean technical efficiency obtained in this 
study is higher than that estimated in other studies for 
Switzerland. JAN et al. (2010) calculates the technical 
efficiency of Swiss dairy farms located in the moun-
tainous region to be about 75%, on average. FERJANI 

(2009) reports the mean efficiencies of farms in plain, 
hill, and mountain regions of Switzerland to be 77%, 
68%, and 57%, respectively. Both studies, however, 
use data envelopment analysis (DEA). Accordingly, 
both previously mentioned studies might have under-
estimated the technical efficiency of Swiss farms, 
since by accounting for all deviations from the best 
practices as inefficiencies, DEA provides lower scores 
for technical efficiency. Another explanation for the 
high values of technical efficiency could be that the 
farms investigated in our study are conventional, 
‘big’, and full-time farms (as a consequence of our 
selection criteria), and do not reflect the overall hetero-
geneity of the Swiss dairy sector. The studies men-
tioned previously distinguish neither between organic 
and conventional farms, nor between part- time and 
full-time farms.  

We observe the mean efficiency scores to be 
0.93, 0.93, and 0.95 for ODF1, ODF2, and ODF3, 
respectively. The efficiency scores of farms ranged 
from 0.61 to 1.00 (S.D. = 0.06) in the case of ODF1, 
from 0.65 to 1.00 (S.D. = 0.06) in ODF2, and from 
0.71 to 1.00 (S.D. = 0.04) in ODF3.  

The individual technical efficiency scores differ 
in the three model specifications. Figure 1 presents the 
comparison of the individual technical efficiency es-
timates for the best-performing farms.  

Figure 1.  Estimates of technical efficiency with three different models (ODF1, ODF2, ODF3) 

 
Source: Authors’ representation 
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The solid line in Figure 1 presents the technical 
efficiency scores for the 47 (5%) best-performing 
observations obtained from the ODF3 model (pre-
ferred model). The dashed lines in this figure show the 
technical efficiency estimates for the same farms, 
according to the ODF2 and ODF1 models. A compar-
ison of these estimates reveals a clear underestimation 
of the technical efficiency for the considered farms 
when employing ODF2 or ODF1 models. Figure 1 
also shows that the composition of the frontier very 
much depends on the model specification. 

However, since the mean efficiencies obtained 
from different models are quite similar (0.93, 0.93, 
and 0.95 in ODF1, ODF2, and ODF3, respectively), 
the underestimation of efficiency scores for the best 
performing farms must be accompanied by an overes-
timation of the technical efficiency of some other 
farms. When investigating differences for the whole 
sample, we observe that overestimation mainly occurs 
for the worst-performing farms (see Figure A1 and 
Figure A2 in the Appendix).  

These results could be explained by the fact that 
in the ODF3 approach, we consider direct payments 
separately. Obviously, the ODF2 and ODF1 specifica-
tions (when direct payments are aggregated with other 
outputs) do not allow for adequate consideration of 
this farm output. 

For further investigation of the technical efficien-
cy scores, we estimate the rank correlations among the 
scores resulted in three different models. The results 
of these estimations are given in Table 4. 

As indicated in Table 4, the correlation between 
the efficiency estimates in the ODF2 and ODF1 mod-
els is relatively high. On the contrary, the rank corre-
lation is considerably low between the estimates in 
ODF3 and ODF2 as well as between the estimates in 
ODF3 and ODF1. Again, this confirms that the sepa-
rate consideration of direct payments in the specifica-
tion of production technology has a major impact on 
the results. 

4.4  Effect of Farm Characteristics 

The following farm characteristics show significant 
influence on the technical efficiency of the sample 
farms: share of rented land (positive); share of hired 
labour (positive); share of off-farm income (negative); 
share of para-agriculture (negative); and ecological 
direct payments per animal (positive). We do not find 
significant effects of the variables age, education, and 
altitude. As already mentioned, we also included the 
logged inputs as well as the log output ratios for hetero-
scedasticity in uit. Most of these variables (logged 
inputs and the log output ratios) are excluded as a 
result of the likelihood ratio tests. Only logged land 
and logged labour are significant (see Table A2 in the 
Appendix).  

As mentioned, we also calculate the marginal ef-
fect of farm characteristics on the expected value and 
variance of the inefficiency component (expressions 
(8) and (9)). Table 5 presents the average marginal 
effects that resulted in the ODF3 model. 

The variables age (z1), education (z2), and alti-
tude (z8) are not significant in this study. As discussed 
in Chapter 3, empirical results of sociological varia-
bles (age and education) are dissimilar. The result 
regarding altitude might be connected to the fact that 
our sample includes only farms in the plain region of 
Switzerland, and altitude seems to be a less influential 
factor there. 

The results of this study confirm our hypothesis 
(see Chapter 3) regarding the negative influence of the 
share of off-farm income (z5). For other variables, the 
findings of this study are contrary to our hypothesis. 
The positive effect of the share of rented land (z3) 
might be explained by the fact that farms with a high-
er share of rented land tend to be larger and, therefore, 
they might have higher efficiency scores. The same 
reason might cause the positive influence of the share 
of hired labour (z4), since larger farms tend to hire a 

Table 4.  Correlations between technical  
efficiency scores estimated with  
three different models 

 
ODF1 - 
ODF2 

ODF1 - 
ODF3 

ODF2 - 
ODF3 

Spearman’s rank 
correlation  
coefficient 

0.842*** 0.226*** 0.351*** 

Kendall’s rank 
correlation  
coefficient 

0.698*** 0.153*** 0.242*** 

Source: Authors’ calculations 

Table 5.  The average marginal effect of  
farm characteristics on E(uit) and V(uit) 

Variable on E(uit) on V(uit) 
Share of rented land  -.00035 -.00003 

Share of hired labour  -.00070 -.00007 

Share of off-farm income 
of total farm income 

 .00102  .00010 

Share of para-agriculture in 
the total farm output 

 .00120  .00012 

Ecological direct payments 
per animal 

-.00030 -.00003 

Source: Authors’ calculations 
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more labour. The reason for the negative influence of 
share of para-agriculture (z6) might be associated with 
the fact that para-agricultural activities (similar to off-
farm activities) could distract farmers from their main 
activities. The positive influence of ecological direct 
payments (z7) might be connected to the fact that 
environmental protection does not necessarily in-
crease production costs.  

In general, we observe very small marginal ef-
fects of farm characteristics on the expected value of 
uit as well as on the variance of uit (see Table 5). This 
indicates the rather negligible impact (in economic 
terms) of these variables on the technical efficiency of 
sample farms.  

5  Conclusions 

The main purpose of this study is to analyse the pro-
duction technology and technical efficiency of farms 
by considering different farm outputs. We estimate the 
technical efficiency of farms by using the multiple-
output, multiple-input representation of the production 
technology, and compare the results with the single 
output representation of the technology. The analysis 
uses unbalanced panel data for Swiss dairy farms for 
the period of 2003 to 2009. 

This study shows that the separate consideration 
of direct payments causes a substantial increase in the 
elasticity of land and, respectively, lower elasticities 
of the remaining production factors. This finding sug-
gests that the remuneration of Swiss farms for the 
provision of positive externalities (or for the reduction 
of negative externalities) seriously influences the re-
source-allocation decisions of farmers. As most of 
these payments are bound to land input, we observe a 
high elasticity for this input. 

The choice of specification (single-output vs. 
multi-output technology) does not produce much dif-
ference in terms of the average estimates of technical 
efficiency. However, depending on the specification, 
individual efficiency scores differ considerably in the 
specifications. The estimated rank correlation coeffi-
cients show that the model with three outputs ranks 
farms differently with respect to technical efficiency.  
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Appendix 

Table A1.  Descriptive statistics of the variables used (927 observations) 

Mean Std. dev. Min Max 
Outputs     
Agricultural output in Swiss francs 205601.80 71624.97 83454.10 614488.10 
Para-agricultural output in Swiss francs 8983.37 19606.09 0.00 231308.80 
Direct payments (general and ecological) in Swiss francs 46069.90 16063.49 18275.50 148806.00 
Share of agricultural output in total farm output (in %) 78.54 7.68 49.80 92.61 
Share of para-agriculture in total farm output (in %)  3.26 6.28 0.00 39.94 
Share of direct payments in total farm output (in %) 18.20 5.20 6.73 35.41 
Inputs     
Land in ha 23.92 7.14 10.84 60.07 
Labor in man-year standard units 1.70 0.48 0.89 3.92 
Capital in Swiss francs 38222.86 16390.67 4528.00 118611.40 
Livestock in standardized livestock units 32.43 8.85 20.09 59.88 
Intermediates in Swiss francs 78466.61 35508.08 21258.02 384117.00 
Feed in Swiss francs 24610.55 20586.55 1859.83 207530.70 
Farm characteristics     
Age 45.00 8.99 23.00 65.00 
Education 3.37 0.69 1.00 5.00 
Share of rented land (in %) 43.66 28.82 0.00 100.00 
Share of hired labor (in %) 18.07 18.21 0.00 71.68 
Share of off-farm income (in %) 14.63 12.20 0.00 49.59 
Share of para-agriculture (in %) 3.26 6.28 0.00 39.94 
Ecological direct payments per animal (in Swiss francs) 303.27 110.00 0.00 1093.46 
Altitude (in metres above sea level) 540.66 93.33 350.00 1050.00 

Source: Authors’ calculations 



All rights reserved www.gjae-online.de

GJAE 63 (2014), Number 1 

29 

 

Table A2.  Parameter estimates of distance functions 

  ODF 3 ODF 2 ODF1 
Variables Coef. Estimat. S.E. P-value Estimat. S.E. P-value Estimat. S.E. P-value 
constant α0 -0.035 0.018 0.057 -0.069 0.022 0.001 -0.019 0.019 0.312 
y2  para α2 0.006 0.002 0.001 0.011 0.002 0.000 --- --- --- 
y3  d. p. α3 0.470 0.026 0.000 --- --- --- --- --- --- 
y2y2 α22 0.001 0.000 0.002 0.001 0.000 0.000 --- --- --- 
y3y3 α33 -0.416 0.056 0.000 --- --- --- --- --- --- 
y2y3 α23 0.002 0.002 0.484 --- --- --- --- --- --- 
xl    land β1  -0.390 0.041 0.000 -0.139 0.040 0.001 -0.138 0.040 0.001 
xw  labor β2 -0.124 0.035 0.000 -0.116 0.037 0.002 -0.099 0.037 0.007 
xk  capit. β3 -0.097 0.020 0.000 -0.158 0.022 0.000 -0.157 0.021 0.000 
xa  livest. β4 -0.361 0.046 0.000 -0.498 0.055 0.000 -0.437 0.058 0.000 
xm mater.  β5 -0.079 0.025 0.001 -0.105 0.033 0.001 -0.158 0.033 0.000 
xf   feed β6 -0.048 0.015 0.002 -0.072 0.017 0.000 -0.052 0.017 0.003 
xll β11 -0.087 0.113 0.440 -0.072 0.114 0.530 -0.062 0.108 0.564 
xww β22 0.059 0.088 0.503 0.146 0.103 0.157 0.019 0.102 0.854 
xkk β33 -0.055 0.029 0.056 -0.095 0.029 0.001 -0.100 0.029 0.000 
xaa β44 0.172 0.195 0.377 0.540 0.233 0.020 0.421 0.231 0.068 
xmm β55 -0.129 0.055 0.019 -0.080 0.064 0.212 -0.172 0.067 0.010 
xff β66 -0.067 0.016 0.000 -0.047 0.021 0.025 -0.059 0.021 0.005 
xlw β12 0.082 0.137 0.549 -0.130 0.152 0.395 -0.049 0.148 0.740 
xlk β13 0.061 0.112 0.584 0.004 0.095 0.962 0.026 0.093 0.783 
xla β14 -0.396 0.223 0.076 -0.609 0.257 0.018 -0.679 0.254 0.008 
xlm β15 -0.036 0.126 0.776 0.018 0.141 0.900 0.163 0.138 0.239 
xlf β16 0.267 0.063 0.000 0.296 0.084 0.000 0.208 0.083 0.012 
xwk β23 -0.008 0.080 0.924 0.010 0.083 0.900 -0.074 0.085 0.383 
xwa β24 -0.344 0.174 0.049 -0.188 0.219 0.391 -0.069 0.214 0.746 
xwm β25 0.126 0.104 0.225 0.039 0.122 0.751 -0.223 0.117 0.057 
xwf β26 0.001 0.055 0.982 -0.004 0.068 0.955 0.029 0.066 0.661 
xka β34 0.236 0.110 0.031 0.267 0.114 0.020 0.301 0.115 0.009 
xkm β35 -0.011 0.059 0.850 0.029 0.065 0.659 -0.008 0.066 0.901 
xkf β36 -0.057 0.038 0.135 -0.024 0.040 0.545 -0.027 0.040 0.493 
xam β45 0.114 0.147 0.441 -0.270 0.180 0.134 -0.057 0.182 0.752 
xaf β46 -0.145 0.091 0.110 -0.350 0.113 0.002 -0.330 0.117 0.005 
xfm β56 0.090 0.048 0.058 0.144 0.060 0.018 0.188 0.061 0.002 
xly2 δ12 0.001 0.002 0.620 0.002 0.002 0.363 --- --- --- 
xwy2 δ22 -0.008 0.002 0.000 -0.008 0.002 0.000 --- --- --- 
xky2 δ32 0.000 0.001 0.958 -0.002 0.001 0.084 --- --- --- 
xay2 δ42 -0.006 0.002 0.005 -0.006 0.003 0.024 --- --- --- 
xmy2 δ52 0.002 0.001 0.090 0.003 0.002 0.107 --- --- --- 
xfy2 δ62 0.000 0.001 0.682 0.000 0.001 0.669 --- --- --- 
xly3 δ13 0.185 0.052 0.000 --- --- --- --- --- --- 
xwy3 δ23 0.008 0.047 0.859 --- --- --- --- --- --- 
xky3 δ33 0.002 0.036 0.963 --- --- --- --- --- --- 
xay3 δ43 0.070 0.068 0.298 --- --- --- --- --- --- 
xmy3 δ53 -0.092 0.043 0.033 --- --- --- --- --- --- 
xfy3 δ63 -0.122 0.022 0.000 --- --- --- --- --- --- 
t  time εt 0.022 0.007 0.002 0.004 0.009 0.664 0.010 0.009 0.247 
tt εtt -0.010 0.002 0.000 -0.004 0.002 0.066 -0.005 0.002 0.020 
xlt θ1t 0.006 0.009 0.476 0.012 0.010 0.235 0.015 0.010 0.129 
xwt θ2t 0.014 0.007 0.043 0.025 0.008 0.003 0.018 0.008 0.036 
xkt θ3t 0.000 0.004 0.997 -0.004 0.005 0.384 -0.007 0.005 0.119 
xat θ4t -0.001 0.011 0.915 0.023 0.013 0.082 0.026 0.013 0.053 
xmt θ5t -0.005 0.006 0.401 -0.013 0.007 0.069 -0.015 0.007 0.040 
xft θ6t 0.004 0.003 0.233 0.005 0.004 0.228 0.002 0.004 0.593 
y2t ω2t 0.000 0.000 0.780 -0.001 0.000 0.008 --- --- --- 
y3t ω3t 0.017 0.006 0.004 --- --- --- --- --- --- 
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Table A2 (continued) 

Usigmas          
constant γ0 -8.519 2.178 0.000 -69.612 8.286 0.000 -84.998 9.246 0.000 
z1* γ1 --- --- --- --- --- --- --- --- --- 
z2 γ2 --- --- --- --- --- --- --- --- --- 
z3 γ3 -0.014 0.006 0.012 --- --- --- --- --- --- 
z4 γ4 -0.028 0.008 0.001 -0.026 0.007 0.000 -0.024 0.007 0.001 
z5 γ5 0.041 0.009 0.000 0.033 0.008 0.000 0.034 0.008 0.000 
z6 γ6 0.048 0.018 0.010 -0.165 0.031 0.000 
z7 γ7 -0.012 0.001 0.000 -0.007 0.001 0.000 -0.008 0.001 0.000 
z8 γ8 --- --- --- --- --- --- --- --- --- 
z9 γ9 --- --- --- --- --- --- --- --- --- 
z10 γ10 --- --- --- 58.321 5.558 0.000 63.097 6.056 0.000 
lnl γ11 1.773 0.719 0.014 -2.853 0.836 0.001 -3.441 0.892 0.000 
lnw γ12 1.780 0.841 0.034 --- --- --- --- --- --- 
lnk γ13 --- --- --- 1.197 0.413 0.004 1.858 0.419 0.000 
lna γ14 --- --- --- --- --- --- -2.027 0.941 0.031 
lnm γ15 --- --- --- 1.057 0.431 0.014 2.270 0.525 0.000 
lnf γ16 --- --- --- --- --- --- --- --- --- 
vsigmas          
constant ξ0 -4.678 0.631 0.000 -1.836 0.481 0.000 -2.249 0.421 0.000 
s1 ξ1 -0.026 0.007 0.000 --- --- --- --- --- --- 
s2 ξ2 -0.173 0.104 0.098 --- --- --- --- --- --- 
s3 ξ3 --- --- --- -0.013 0.003 0.000 -0.012 0.002 0.000 
s4 ξ4 --- --- --- --- --- --- --- --- --- 
s5 ξ5 -0.016 0.006 0.012 -0.034 0.007 0.000 -0.041 0.007 0.000 
s6 ξ6 --- --- --- --- --- --- --- --- --- 
s7 ξ7 0.003 0.001 0.000 --- --- --- --- --- --- 
s8 ξ8 0.001 0.001 0.048 -0.003 0.001 0.000 -0.002 0.001 0.001 

* First, we included all z and s variables described in Chapter 3. For each model (ODF1, ODF2, and ODF3), we conducted backward 
selection of these variables, in order to test whether they can be excluded or not. Table A2 presents parameter estimates for three final 
models. 
Source: Authors’ calculations 
 
 
Figure A1.  Technical efficiency scores of all observations estimated with three different models  

(ordered according to ODF3) 

 
Source: Authors’ representation 
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