Adjoints of Sums of M-Accretive Operators and Applications to Non-Autonomous Evolutionary Equations
DOI:
https://doi.org/10.52825/dae-p.v2i.994Keywords:
Evolutionary Equations, Non-autonomous Equations, m-accretive OperatorsAbstract
We provide certain compatibility conditions for m-accretive operators such that the adjoint of the sum is given by the closure of the sum of the respective adjoint. We revisit the proof of well-posedness of the abstract class of partial differential-algebraic equations known as evolutionary equations. We show that the general mechanism provided here can be applied to establish wellposedness for non-autonomous evolutionary equations with L∞-coefficients thus not only generalizing known results but opening up new directions other methods such as evolution families have a hard time to come by.
Downloads
References
F. Bayazit, B. Dorn, M. K. Fijavž. Asymptotic periodicity of flows in time-depending networks. English. Netw. Heterog. Media. 2013;8(4):843–855.
C. Budde, M. K. Fijavž. Well-posedness of non-autonomous transport equation on metric graphs. 2023.
G. Dore, A. Venni. On the closedness of the sum of two closed operators. English. Math. Z. 1987;196:189–201.
K.-J. Engel, R. Nagel. One-parameter semigroups for linear evolution equations. English. Vol. 194. Grad. Texts Math. Berlin: Springer, 2000.
S. Hu, N. S. Papageorgiou. Handbook of multivalued analysis. Volume I: Theory. English. Vol. 419. Math. Appl., Dordr. Dordrecht: Kluwer Academic Publishers, 1997.
M. Kramar, E. Sikolya. Spectral properties and asymptotic periodicity of flows in networks. English. Math. Z. 2005;249(1):139–162.
T. Mátrai, E. Sikola. Asymptotic behavior of flows in networks. English. Forum Math. 2007;19(3):429–461.
M. H. Mortad. On the adjoint and the closure of the sum of two unbounded operators. English. Can. Math. Bull. 2011;54(3):498–505.
G. Nickel. Evolution semigroups for nonautonomous Cauchy problems. English. Abstr. Appl. Anal. 1997;2(1-2):73–95.
R. Picard. “A class of evolutionary problems with an application to acoustic waves with impedance type boundary conditions”. English. Spectral theory, mathematical system theory, evolution equations, differential and difference equations. Selected papers of 21st international workshop on operator theory and applications, IWOTA10, Berlin, Germany, July 12–16, 2010. Basel: Birkhäuser, 2012:533–548.
R. Picard. A structural observation for linear material laws in classical mathematical physics. English. Math. Methods Appl. Sci. 2009;32(14):1768–1803.
R. Picard, D. McGhee, S. Trostorff, M. Waurick. A primer for a secret shortcut to PDEs of mathematical physics. English. Front. Math. Cham: Springer, 2020.
R. Picard, S. Trostorff. Dynamic first order wave systems with drift term on Riemannian manifolds. English. J. Math. Anal. Appl. 2022;505(1). Id/No 125465:30.
R. Picard, S. Trostorff, M. Waurick, M. Wehowski. On non-autonomous evolutionary problems. English. J. Evol. Equ. 2013;13(4):751–776.
R. H. Picard, S. Trostorff, B. Watson, M. Waurick. A structural observation on port-Hamiltonian systems. English. SIAM J. Control Optim. 2023;61(2):511–535.
G. da Prato and P. Grisvard. Sommes d’opérateurs linéaires et équations différentielles opéra- tionnelles. J. Math. Pures Appl. (9), 54:305–387, 1975.
N. Roidos. Closedness and invertibility for the sum of two closed operators. English. Adv. Oper. Theory. 2018;3(3):582–605.
C. Seifert, S. Trostorff, M. Waurick. Evolutionary equations. Picard’s theorem for partial differential equations, and applications. English. Vol. 287. Oper. Theory: Adv. Appl. Cham: Birkhäuser, 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rainer Picard, Sascha Trostorff, Marcus Waurick
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-05-01
Published 2024-05-30