Hidden Regularity in Singular Optimal Control of port-Hamiltonian Systems

Authors

DOI:

https://doi.org/10.52825/dae-p.v3i.960

Keywords:

Singular Optimal Control, port-Hamiltonian Systems, Regular Pencil, Hidden Regularity, Minimal Energy, Differential-Algebraic Equation, Index

Abstract

We study the problem of state transition on a finite time interval with minimal energy supply for linear port-Hamiltonian systems. While the cost functional of minimal energy supply is intrinsic to the port-Hamiltonian structure, the necessary conditions of optimality resulting from Pontryagin's maximum principle may yield singular arcs. The underlying reason is the linear dependence on the control, which makes the problem of determining the optimal control as a function of the state and the adjoint more complicated or even impossible. To resolve this issue, we fully characterize regularity of the (differential-algebraic) optimality system by using the interplay of the cost functional and the dynamics. In case of the optimality DAE being characterized by a regular matrix pencil, we fully determine the control on the singular arc. In case of singular matrix pencils of the optimality system, we propose an approach to compute rank-minimal quadratic perturbations of the objective such that the optimal control problem becomes regular. We illustrate the applicability of our results by a general second-order mechanical system and a discretized boundary-controlled heat equation.

Downloads

Download data is not yet available.

References

[1] R. Altmann, P. Schulze. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters. 2017;100:51–55.

[2] M. Aronna. “Second order analysis of optimal control problems with singular arcs. Optimality conditions and shooting algorithm.” PhD thesis. Ecole Polytechnique X, 2011.

[3] D. Bell, D. Jacobson. Singular optimal control problems. Elsevier, 1975.

[4] T. Berger, A. Ilchmann, S. Trenn. The quasi-Weierstras form for regular matrix pencils. Linear Algebra and its Applications. 2012;436:4052–4069. Timm Faulwasser et al. | Hidden regularity in singular optimal control of pH systems

[5] A. Brugnoli, D. Alazard, V. Pommier-Budinger, D. Matignon. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling. 2019;75:940–960.

[6] A. Brugnoli, D. Alazard, V. Pommier-Budinger, D. Matignon. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling. 2019;75:961–981.

[7] R. Byers, V. Mehrmann, H. Xu. A structured staircase algorithm for skew-symmetric/symmetric pencils. Electronic Transactions on Numerical Analysis. 2007;26:1–33.

[8] S. L. Campbell. Optimal Control of Autonomous Linear Processes with Singular Matrices in the Quadratic Cost Functional. SIAM Journal on Control and Optimization. 1976;14(6):1092–1106.

[9] S. L. Campbell, C. D. Meyer Jr., N. J. Rose. Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients. SIAM Journal on Applied Mathematics. 1976;31(3):411–425.

[10] V. Duindam, A. Macchelli, S. Stramigioli, H. Bruyninckx. Modeling and control of complex physical systems: the port-Hamiltonian approach. Springer Berlin, Heidelberg, 2009.

[11] W. Esterhuizen, B. Maschke, T. Preuster, M. Schaller, K. Worthmann. Existence of solutions to port-Hamiltonian systems: initial value problems and optimal control. Preprint arXiv:2410.18888. 2024.

[12] T. Faulwasser, B. Maschke, F. Philipp, M. Schaller, K. Worthmann. Optimal control of port-Hamiltonian descriptor systems with minimal energy supply. SIAM Journal on Control and Optimization. 2022;60:2132–2158.

[13] F. R. Gantmacher. The Theory of Matrices volume one. 3rd. Providence, Rhode Island: AMS Chelsea Publishing, 1977.

[14] M. Guerra, A. Saryev. Approximation of Generalized Minimizers and Regularization of Optimal Control Problems. Lagrangian and Hamiltonian Methods For Nonlinear Control 2006. Lecture notes in Control and Information Sciences 366. Berlin, Heidelberg: Springer-Verlag, 2007:269–279.

[15] H Hoang, F. Couenne, C. Jallut, Y. Le Gorrec. The port Hamiltonian approach to modeling and control of continuous stirred tank reactors. Journal of Process Control. 2011;21(10):1449–1458.

[16] B. Jacob, H. J. Zwart. Linear port-Hamiltonian systems on infinite-dimensional spaces. Vol. 223. Birkh¨auser Basel, 2012.

[17] A. Karsai. Manifold turnpikes of nonlinear port-Hamiltonian descriptor systems under minimal energy supply. Mathematics of Control, Signals and Systems. 2024;36:707–728.

[18] T. Kato. Perturbation Theory for Linear Operators. Berlin, Heidelberg: Springer, 1980.

[19] L. K¨olsch, P. J. Soneira, F. Strehle, S. Hohmann. Optimal control of port-Hamiltonian systems: a continuous-time learning approach. Automatica. 2021;130:109725.

[20] S. G. Krantz, H. R. Parks. A Primer of Real Analytic Functions. second edition. Boston, Basel, Berlin: Birkh¨auser Boston, 2002.

[21] P. Kunkel, V. Mehrmann. Local and global canonical forms for differential-algebraic equations with symmetries. Vietnam Journal of Mathematics. 2023;51:177–198.

[22] P. Kunkel, V. Mehrmann. “Optimal control for linear descriptor systems with variable coefficients”. Numerical Linear Algebra in Signals, Systems and Control. Springer New York, 2011:313–339.

[23] P. Kunkel, V. Mehrmann, L. Scholz. Self-adjoint differential-algebraic equations. Mathematics of Control, Signals, and Systems. 2014;26:47–76.

[24] P. Kunkel, V. Mehrmann. Differential-Algebraic Equations. Analysis and Numerical Solution. 2nd. Berlin: EMS Press, 2024. Timm Faulwasser et al. | Hidden regularity in singular optimal control of pH systems

[25] E. Lee, L. Markus. Foundations of Optimal Control Theory. The SIAM Series in Applied Mathematics. John Wiley & Sons New York, London, Sydney, 1967.

[26] D. Liberzon. Calculus of Variations and Optimal Control Theory. A Concise Introduction. Princeton, Oxford: Princeton Univerity Press, 2012.

[27] J. Liesen, V. Mehrmann. Linear Algebra. Springer Undergraduate Mathematics Series. Cham: Springer, 2015:xi + 324.

[28] A. Macchelli. Towards a port-based formulation of macro-economic systems. Journal of the Franklin Institute. 2014;351(12):5235–5249.

[29] A. Macchelli, C. Melchiorri, S. Stramigioli. Port-based modeling of a flexible link. IEEE Transactions on Robotics. 2007;23(4):650–660.

[30] B. Maschke, F. Philipp, M. Schaller, K. Worthmann, T. Faulwasser. Optimal control of thermodynamic port-Hamiltonian systems. IFAC-PapersOnLine. 2022;55(30):55–60.

[31] B. Maschke, A. van der Schaft. “Port-controlled Hamiltonian systems: modelling origins and systemtheoretic properties”. Nonlinear Control Systems Design. Elsevier, 1992:359–365.

[32] V. Mehrmann. The Autonomous Linear Quadratic Control Problem. Theory and Numerical Solution. Vol. 163. Lecture Notes in Control and Information Sciences. Berlin etc.: Springer-Verlag, 1991:177.

[33] V. Mehrmann, B. Unger. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica. 2023;32:395 515.

[34] F. Philipp, M. Schaller, T. Faulwasser, B. Maschke, K. Worthmann. Minimizing the energy supply of infinite-dimensional linear port-Hamiltonian systems. IFAC-PapersOnLine. 2021;54(19):155–160.

[35] F. M. Philipp, M. Schaller, K. Worthmann, T. Faulwasser, B. Maschke. Optimal control of port-Hamiltonian systems: Energy, entropy, and exergy. Systems & Control Letters. 2024;194:105942.

[36] L. Pontryagin, V. Boltyanskii, R. Gamkrelidze, E. Mishenko. The Mathematical Theory of Optimal Processes. New York: Interscience, 1962.

[37] R. Rashad, F. Califano, F. P. Schuller, S. Stramigioli. Port-Hamiltonian modeling of ideal fluid flow: Part I. foundations and kinetic energy. Journal of Geometry and Physics. 2021;164:104201.

[38] R. Rashad, F. Califano, F. P. Schuller, S. Stramigioli. Port-Hamiltonian modeling of ideal fluid flow: Part II. Compressible and incompressible flow. Journal of Geometry and Physics. 2021;164:104199.

[39] T. Reis, T. Stykel. Passivity, port-Hamiltonian formulation and solution estimates for a coupled magneto-quasistatic system. Evolution Equations and Control Theory. 2023;12(4):1208–1232.

[40] M. Schaller, F. Philipp, T. Faulwasser, B. Maschke, K. Worthmann. Control of port-Hamiltonian systems with minimal energy supply. European Journal of Control. 2021;60:33–40.

[41] M. Schaller, A. Zeller, M. B¨ohm, O. Sawodny, C. Tar´ın, K. Worthmann. Energy-optimal control of adaptive structures. at - Automatisierungstechnik. 2024;72(2):107–119.

[42] M Sch¨oberl, H Ennsbrunner, K Schlacher. Modelling of piezoelectric structures–a Hamiltonian approach. Mathematical and Computer Modelling of Dynamical Systems. 2008;14(3):179–193.

[43] A. Siuka, M. Sch¨oberl, K. Schlacher. Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta mechanica. 2011;222(1):69–89.

[44] E. Sontag. Mathematical control theory: deterministic finite dimensional systems. Vol. 6. Springer New York, 2013.

[45] J. Strikwerda. Finite difference schemes and partial differential equations. SIAM, 2004.

[46] F. Tr¨oltzsch. Optimal control of partial differential equations: theory, methods, and applications. Vol. 112. American Mathematical Soc., 2010. Timm Faulwasser et al. | Hidden regularity in singular optimal control of pH systems

[47] A. Van Der Schaft, D. Jeltsema. Port-Hamiltonian systems theory: an introductory overview. Foundations and Trends in Systems and Control. 2014;1(2-3):173–378.

[48] A.Warsewa, M. B¨ohm, O. Sawodny, C. Tar´ın. A port-Hamiltonian approach to modeling the structural dynamics of complex systems. Applied Mathematical Modelling. 2021;89:1528–1546.

[49] K.-T. Wong. The Eigenvalue Problem λTx+Sx. Journal of Differential Equations. 1974;16:270–280.

[50] Y. Wu, B. Hamroun, Y. Le Gorrec, B. Maschke. Reduced order LQG control design for infinite dimensional port Hamiltonian systems. IEEE Transactions on Automatic Control. 2020;66(2):865–871.

[51] M. I. Zelikin, V. F. Borisov. Theory of chattering control: with applications to astronautics, robotics, economics, and engineering. Birkh¨auser Boston, 2012.

Downloads

Published

2025-01-20

How to Cite

Faulwasser, T., Kirchhoff, J., Mehrmann, V., Philipp, F., Schaller, M., & Worthmann, K. (2025). Hidden Regularity in Singular Optimal Control of port-Hamiltonian Systems. DAE Panel, 3. https://doi.org/10.52825/dae-p.v3i.960

Issue

Section

Research articles
Received 2023-11-18
Accepted 2024-11-07
Published 2025-01-20

Funding data