Abstract Dissipative Hamiltonian Differential-Algebraic Equations Are Everywhere

Authors

DOI:

https://doi.org/10.52825/dae-p.v2i.957

Keywords:

Abstract Differential-Algebraic Equation, Closure Relation, Dissipative Hamiltonian System, Energy Based Modelling, Operator Pair, Regular Pair, Singular Pair

Abstract

In this paper we study the representation of partial differential equations (PDEs) as abstract differential-algebraic equations (DAEs) with dissipative Hamiltonian structure (adHDAEs). We show that these systems not only arise when there are constraints coming from the underlying physics, but many standard PDE models can be seen as an adHDAE on an extended state space. This reflects the fact that models often include closure relations and structural properties. We present a unifying operator theoretic approach to analyze the properties of such operator equations and illustrate this by several applications.

Downloads

Download data is not yet available.

References

[1] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander. Vector-valued Laplace Transforms and Cauchy Problems. Second. Vol. 96. Monographs in Mathematics. Birkhäuser/Springer Basel AG, Basel, 2011: xii+539.

[2] A. Bartel, M. Clemens, M. Gu¨nther, B. Jacob, T. Reis. Port-Hamiltonian systems modelling in electrical engineering. arXiv preprint arXiv:2301.02024. 2023.

[3] C. Beattie, V. Mehrmann, H. Xu, H. Zwart. Port-Hamiltonian descriptor systems. Math. Control Signals Systems. 2018; 30(17):1–27.

[4] A. Bendimerad-Hohl, D. Matignon, G. Haine, L. Lefe`vre. On implicit and explicit representations for 1d distributed port-Hamiltonian systems. arXiv preprint arXiv:2402.07628. 2024.

[5] K. E. Brenan, S. L. Campbell, L. R. Petzold. Numerical Solution of Initial-value Problems in Differential-algebraic Equations. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1996.

[6] F. Brezzi, M. Fortin. Mixed and Hybrid Finite Element Methods. Vol. 15. Springer Science & Business Media, 2012.

[7] R. Curtain, H. Zwart. Introduction to Infinite-Dimensional Systems Theory, A state-space approach. Vol. 71. Texts in Applied Mathematics. Springer, New York, 2020:xii+752.

[8] R. F. Curtain. Invariance Concepts in Infinite Dimensions. SIAM J. Control Optim. 1986; 24(5):1009– 1030.

[9] R. F. Curtain, H. J. Zwart. An Introduction to Infinite-Dimensional Linear Systems Theory. Vol. 21. Texts in Applied Mathematics. Springer-Verlag, New York, 1995:xviii+698.

[10] H. Egger, T. Kugler. Damped wave systems on networks: exponential stability and uniform approximations. Numer. Math. 2018;138(4):839–867.

[11] H. Egger, T. Kugler, B. Liljegren-Sailer, N. Marheineke, V. Mehrmann. On structure preserving model reduction for damped wave propagation in transport networks. SIAM J. Sci. Comput. 2018; 40:A331–A365.

[12] E. Emmrich, V. Mehrmann. Operator differential-algebraic equations arising in fluid dynamics. Comput. Methods Appl. Math. 2013; 13(4):443–470.

[13] M. Erbay, B. Jacob, K. Morris, T. Reis, C. Tischendorf. Index concepts for linear differential- algebraic equations in finite and infinite dimensions. arXiv preprint arXiv:2401.01771. 2024.

[14] H. Gernandt, F. E. Haller, E. Reis. A linear relation approach to port-Hamiltonian differential- algebraic equations. SIAM J. Matrix Anal. Appl. 2021;42(2):1011–1044.

[15] H. Gernandt, F. E. Haller, T. Reis, A. J. van der Schaft. Port-Hamiltonian formulation of nonlinear electrical circuits. J. Geom. Phys. 2021; 159:103959.

[16] H. Gernandt, T. Reis. A pseudo-resolvent approach to abstract differential-algebraic equations. arXiv. 2023.

[17] V. I. Gorbachuk, M. L. Gorbachuk. On Boundary Value Problems for Operator Differential Equations. Vol. 48. Mathematics and its Applications (Soviet Series). Translated and revised from the 1984 Russian original. Kluwer Academic Publishers Group, Dordrecht, 1991: xii+347.

[18] M. Günther, A. Bartel, B. Jacob, T. Reis. Dynamic iteration schemes and port-Hamiltonian formulation in coupled differential-algebraic equation circuit simulation. Int. J. Circuit Theory Appl. 2021; 49(2):430–452.

[19] W. Hackbusch. Elliptic Differential Equations. Second. Vol. 18. Springer Series in Computational Mathematics. Theory and numerical treatment. Springer-Verlag, Berlin, 2017: xiv+455.

[20] E. Hairer, G. Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. 2nd. Berlin, Germany: Springer-Verlag, 1996.

[21] B. Jacob, K. Morris. On solvability of dissipative partial differential-algebraic equations. IEEE Control Systems Letters. 2022; 6:3188–3193.

[22] B. Jacob, K. Morris, H. Zwart. C0-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain. English. Journal of Evolution Equations. 2015; 15(2):493 –502.

[23] B. Jacob, H. Zwart. Linear port-Hamiltonian Systems on Infinite-Dimensional Spaces. Vol. 223. Operator Theory: Advances and Applications. Basel: Birkha¨user, 2012.

[24] J. Jäschke, M. Ehrhardt, M. Günther, B. Jacob. A port-Hamiltonian formulation of coupled heat transfer. Math. Comput. Model. Dyn. Sys. 2022; 28(1):78–94.

[25] P. Kunkel, V. Mehrmann. Differential-Algebraic Equations. Analysis and Numerical Solution. Zürich: European Mathematical Society, 2006.

[26] R. Lamour, R. März, C. Tischendorf. Differential-algebraic Equations: a Pprojector Based Analysis. Springer Science & Business Media, 2013.

[27] Y. Le Gorrec, H. Zwart, B. Maschke. Dirac structures and boundary control systems associated with skew-symmetric differential operators. SIAM J. Control Optim. 2005;44(5):1864–1892.

[28] C. Mehl, V. Mehrmann, M. Wojtylak. Distance problems for dissipative Hamiltonian systems and related matrix polynomials. Linear Algebra Appl. 2021:335–366.

[29] C. Mehl, V. Mehrmann, M. Wojtylak. Linear algebra properties of dissipative Hamiltonian descrip- tor systems. SIAM J. Matrix Anal. Appl. 2018;39(3):1489–1519.

[30] V. Mehrmann, A. van der Schaft. Differential-algebraic systems with dissipative Hamiltonian structture. Math. Control Signals Systems. 2023:1–44.

[31] V. Mehrmann, B. Unger. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica. 2023:395–515.

[32] I. Miyadera. Nonlinear semigroups / Isao Miyadera ; translated by Choong Yun Cho. Translations of Mathematical Monographs, v. 109. Providence, R.I: American Mathematical Society, 1992.

[33] R. Morandin. “Modeling and numerical treatment of port-Hamiltonian descriptor systems”. Dissertation. Technische Universität Berlin, 2023.

[34] C. C Paige, M. Wei. History and generality of the CS decomposition. Linear Algebra Appl. 1994; 208:303– 326.

[35] F. Philipp, T. Reis, M. Schaller. Infinite-dimensional port-Hamiltonian systems–a system node approach. arXiv preprint arXiv:2302.05168. 2023.

[36] T. Reis. Some notes on port-Hamiltonian systems on Banach spaces. IFAC-PapersOnLine. 2021; 54(19):223– 229.

[37] T. Reis, M. Schaller. Port-Hamiltonian formulation of Oseen flows. arXiv preprint arXiv:2305.09618. 2023.

[38] A. van der Schaft. “Port-Hamiltonian differential-algebraic systems”. Surveys in Differential-Algebraic Equations I. Ed. by A. Ilchmann, T. Reis. Differential-Algebraic Equations Forum. Berlin, Heidelberg: Springer-Verlag, 2013:173–226.

[39] A. van der Schaft, V. Mehrmann. Linear port-Hamiltonian DAE systems revisited. Systems Control Lett. 2023; 177:105564.

[40] F. L. Schwenninger, H. Zwart. Generators with a closure relation. Oper. Matrices. 2014; 8(1):157– 165.

[41] O. Staffans. Well-posed Linear Systems. Vol. 103. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2005: xviii+776.

[42] O. Staffans, G. Weiss. A physically motivated class of scattering passive linear systems. English. SIAM J. Control Optim. 2012; 50(5):3083 –3112.

[43] R. Temam. Navier-Stokes equations. Theory and Numerical Analysis. Amsterdam, The Netherlands: North Holland, 1977.

[44] A. van der Schaft, D. Jeltsema. Port-Hamiltonian systems theory: An introductory overview. Foundations and Trends in Systems and Control. 2014; 1(2-3):173–378.

[45] A. van der Schaft, B. Maschke. Dirac and Lagrange algebraic constraints in nonlinear port-Hamiltonian systems. Vietnam J. Mathematics. 2020;48(4):929–939.

[46] A. J. van der Schaft, B. M. Maschke. Hamiltonian formulation of distributed parameter systems with boundary energy flow. J. Geom. Phys. 2002; 42(1–2):166–174.

[47] J. Wloka. Partial Differential Equations. Cambridge UK: Cambridge University Press, 1987.

[48] H. Zwart, Y. Le Gorrec, B. Maschke. Building systems from simple hyperbolic ones. Systems Control Lett. 2016; 91:1–6.

[49] H. J. Zwart. Geometric Theory for Infinite-Dimensional Systems. Vol. 115. Lecture Notes in Control and Information Sciences. Springer-Verlag, Berlin, 1989: viii+156.

Downloads

Published

2024-08-23

How to Cite

Zwart, H., & Mehrmann, V. (2024). Abstract Dissipative Hamiltonian Differential-Algebraic Equations Are Everywhere. DAE Panel, 2. https://doi.org/10.52825/dae-p.v2i.957

Issue

Section

Research articles
Received 2023-11-08
Accepted 2024-06-05
Published 2024-08-23

Funding data