Model Reduction for Switched Differential-Algebraic Equations with Known Switching Signal
Keywords:
Balanced Truncation, Reduced Realization, Descriptor Systems, Reachability/Observability Gramians, Time-Varying SystemsAbstract
Building on our recently proposed model reduction methods for switched ordinary linear systems, we propose a comprehensive model reduction method for linear switched differential-algebraic equations (DAEs). In contrast to most other available model reduction methods for switched systems, we consider the switching signal as a given time-variance of the system. This allows us to exploit certain linear subspaces in the reduction process and also provide in general significantly smaller reduced models compared to methods which consider arbitrary switching signals. Model reduction for switched DAEs has some unique features that make a generalization of the available methods nontrivial; in particular, the presence of jumps and Dirac impulses in response to switches have to be carefully treated. Furthermore, due to the algebraic constraints, the reachability subspaces cannot be the full space, hence a straightforward application of balanced truncation is not possible (because the corresponding reachability Gramians will be structurally non-invertible). We resolve this problem by first applying an exact model reduction which reduces the switched DAE to a switched ordinary system with jumps and which carefully keeps track of the impulsive effects. As a second step, we then apply a midpoint balanced truncation approach to further reduce the switched system. In addition to the challenge to appropriately take into account the Dirac impulses, another novel challenge was the occurrence of input-dependent state-jumps. We propose to deal with input-dependent jumps by combining certain discrete-time reachability Gramians with continuous-time reachability Gramians. We provide corresponding Matlab implementations of the proposed algorithms and illustrate their effectiveness with some academic examples.
Downloads
References
[1] U. M. Ascher, L. R. Petzold. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Philadelphia: SIAM Publications, 1998.
[2] P. Benner, T. Stykel. “Model order reduction for differential-algebraic equations: a survey”. Surveys in Differential-Algebraic Equations IV. Ed. by A. Ilchmann, T. Reis. Cham: Springer-Verlag, 2017:107–160. DOI: 10.1007/978-3-319-46618-7_3.
[3] T. Berger, A. Ilchmann, S. Trenn. The quasi-Weierstraß form for regular matrix pencils. Linear Algebra Appl. 2012;436(10):4052–4069. DOI: 10.1016/j.laa.2009.12.036.
[4] T. Berger, T. Reis, S. Trenn. “Observability of linear differential-algebraic systems: a survey”. Surveys in Differential-Algebraic Equations IV. Ed. by A. Ilchmann, T. Reis. Differential-Algebraic Equations Forum. Berlin-Heidelberg: Springer-Verlag, 2017:161–219. DOI: 10.1007/978-3-319-46618-7_4.
[5] K. E. Brenan, S. L. Campbell, L. R. Petzold. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. Amsterdam: North-Holland, 1989. DOI: 10.1137/1.9781611971224.
[6] S. L. Campbell. Singular Systems of Differential Equations I. New York: Pitman, 1980.
[7] S. L. Campbell. Singular Systems of Differential Equations II. New York: Pitman, 1982.
[8] J. D. Cobb. Controllability, observability and duality in singular systems. IEEE Trans. Autom. Control. 1984;29:1076–1082. DOI: 10.1109/TAC.1984.1103451.
[9] J. D. Cobb. Descriptor variable systems and optimal state regulation. IEEE Trans. Autom. Control. 1983;28:601–611. DOI: 10.1109/TAC.1983.1103283.
[10] L. Dai. Singular Control Systems. Lecture Notes in Control and Information Sciences 118. Berlin: Springer-Verlag, 1989. DOI: 10.1007/BFb0002475.
[11] M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, F. Allgöwer. Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. Journal of Process Control. 2002;12:577–585. DOI: 10.1016/S0959-1524(01)00023-3.
[12] B. Dziurla, R. W. Newcomb. Nonregular semistate systems: examples and input-output pairing. Proc. 26th IEEE Conf. Decis. Control. Vol. 26. New York: IEEE Press, 1987:1125–1126. DOI: 10.1109/CDC.1987.272580.
[13] E. Eich-Soellner, C. Führer. Numerical Methods in Multibody Dynamics. Stuttgart: Teubner, 1998. DOI: 10.1007/978-3-663-09828-7.
[14] C. Führer, B. J. Leimkuhler. Numerical solution of differential-algebraic equations for constrained mechanical motion. Numer. Math. 1991;59:55–69. DOI: 10.1007/BF01385770.
[15] F. R. Gantmacher. The Theory of Matrices (Vol. I & II). New York: Chelsea, 1959.
[16] A. H.W. T. Geerts. Solvability conditions, consistency and weak consistency for linear differentialalgebraic equations and time-invariant linear systems: The general case. Linear Algebra Appl. 1993;181:111–130. DOI: 10.1016/0024-3795(93)90027-L.
[17] I. V. Gosea, M. Petreczky, A. C. Antoulas. Data-driven model order reduction of linear switched systems in the Loewner framework. SIAM Journal on Scientific Computing. 2018;40(2):B572–B610. DOI: 10.1137/17M1120233.
[18] I. V. Gosea, I. Pontes Duff, P. Benner, A. C. Antoulas. Model order reduction of switched linear systems with constrained switching. IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. IUTAM Bookseries. Springer, 2020:41–53. DOI: 10.1007/978-3-030-21013-7_3.
[19] I. V. Gosea, Q. Zhang, A. C. Antoulas. Preserving the DAE structure in the Loewner model reduction and identification framework. Advances in Computational Mathematics. 2020;46:1–32. DOI: 10.1007/s10444-020-09752-8.
[20] P. M. Gresho. Incompressible fluid dynamics: Some fundamental formulation issues. Annu. Rev. Fluid Mech. 1991;23:413–453. DOI: 10.1146/annurev.fl.23.010191.002213.
[21] T. B. Gross, S. Trenn, A. Wirsen. Solvability and stability of a power system DAE model. Syst. Control Lett. 2016;29:12–17. DOI: 10.1016/j.sysconle.2016.08.003.
[22] M. S. Hossain. “Reduced realizations and model reduction for switched linear systems: a timevarying approach”. PhD thesis. Groningen, Netherlands: University of Groningen, 2022. DOI: 10.33612/diss.222461251.
[23] M. S. Hossain, S. Trenn. A weak Kalman decomposition approach for reduced realizations of switched linear systems. IFAC-PapersOnLine. Vol. 55. 20. MATHMOD 2022, Vienna, Austria. July 27, 2022:157–162. DOI: 10.1016/j.ifacol.2022.09.088.
[24] M. S. Hossain, S. Trenn. Midpoint based balanced truncation for switched linear systems with known switching signal. IEEE Trans. Autom. Control. 2024;69(1):535–542. DOI: 10.1109/TAC.2023.3269721.
[25] M. S. Hossain, S. Trenn. Reduced realization for switched linear systems with known mode sequence. Automatica. 2023;154(111065):1–9. DOI: 10.1016/j.automatica.2023.111065.
[26] B. Kågström, P. M. Van Dooren. A generalized state-space approach for the additive decomposition of a transfer matrix. J. Numer. Linear Algebra Appl. 1992;1(2):165–181. URL: https://perso.uclouvain.be/paul.vandooren/publications/KagstromV92.pdf.
[27] P. Kunkel, V. Mehrmann. Differential-Algebraic Equations. Analysis and Numerical Solution. Z¨urich, Switzerland: EMS Publishing House, 2006. DOI: 10.4171/017.
[28] F. L. Lewis. A survey of linear singular systems. IEEE Proc. Circuits, Systems and Signal Processing. 1986;5(1):3–36. DOI: 10.1007/BF01600184.
[29] D. Liberzon. Switching in Systems and Control. Systems and Control: Foundations and Applications. Boston: Birkh¨auser, 2003. DOI: 10.1007/978-1-4612-0017-8.
[30] D. Liberzon, S. Trenn. Switched nonlinear differential algebraic equations: solution theory, Lyapunov functions, and stability. Automatica. 2012;48(5):954–963. DOI: 10.1016/j.automatica. 2012.02.041.
[31] P. Lötstedt, L. R. Petzold. Numerical solution of nonlinear differential equations with algebraic constraints I: Convergence results for backward differentiation formulas. Math. Comp. 1986;46(174):491–516. DOI: 10.1090/S0025-5718-1986-0829621-X.
[32] D. G. Luenberger. Dynamic equations in descriptor form. IEEE Trans. Autom. Control. 1977;22:312–321. DOI: 10.1109/TAC.1977.1101502.
[33] D. G. Luenberger, A. Arbel. Singular dynamic Leontief systems. Econometrica. 1977;45:991–995. DOI: 10.2307/1912686.
[34] M. Manucci, B. Unger. Balancing-based model reduction for switched descriptor systems. arXiv:2404.10511. 2024. DOI: 10.48550/arXiv.2404.10511.
[35] N. Monshizadeh, L. H. Trentelman, M. K. Camlibel. A simultaneous balanced truncation approach to model reduction of switched linear systems. IEEE Trans. Autom. Control. 2012;57(12):3118– 3131. DOI: 10.1109/TAC.2012.2202031.
[36] E. Mostacciuolo, S. Trenn, F. Vasca. Averaging for switched DAEs: convergence, partial averaging and stability. Automatica. 2017;82:145–157. DOI: 10.1016/j.automatica.2017.04.036.
[37] R.W. Newcomb. The semistate description of nonlinear time-variable circuits. IEEE Trans. Circuits Syst. 1981;CAS-28:62–71. DOI: 10.1109/TCS.1981.1084908.
[38] C. C. Pantelides. The consistent initialization of differential-algebraic systems. SIAM J. Sci. Stat. Comput. 1988;9:213–231. DOI: 10.1137/0909014.
[39] I. Pontes Duff, S. Grundel, P. Benner. New Gramians for switched linear systems: reachability, observability, and model reduction. IEEE Trans. Autom. Control. 2020;65(6):2526–2535. DOI: 10.1109/TAC.2019.2934020.
[40] P. J. Rabier, W. C. Rheinboldt. “Theoretical and numerical analysis of differential-algebraic equations”. Handbook of Numerical Analysis. Ed. by P. G. Ciarlet, J. L. Lions. Vol. VIII. Amsterdam, The Netherlands: Elsevier Science, 2002:183–537. DOI: 10.1016/S1570-8659(02)08004-3.
[41] H. H. Rosenbrock. State Space and Multivariable Theory. New York, NY: John Wiley and Sons Inc., 1970.
[42] S. S. K. Sajja, M. Corless, E. Zeheb, R. N. Shorten. On dimensionality reduction and the stability of a class of switched descriptor systems. Automatica. 2013;49(6):1855–1860. DOI: 10.1016/j.automatica.2013.02.056.
[43] W. Schiehlen. Multibody system dynamics: Roots and perspectives. Multibody System Dynamics. 1997;1:149–188. DOI: 10.1023/A:1009745432698.
[44] P. Schulze, B. Unger. Model reduction for linear systems with low-rank switching. SIAM J. Control Optim. 2018;56(6):4365–4384. DOI: 10.1137/18M1167887.
[45] L. Schwartz. Théorie des Distributions I, II. Publications de l’Institut de Mathématique de l’Universite de Strasbourg IX,X. Paris: Hermann, 1950, 1951.
[46] A. Tanwani, S. Trenn. Detectability and observer design for switched differential algebraic equations. Automatica. 2019;99:289–300. DOI: 10.1016/j.automatica.2018.10.043.
[47] A. Tanwani, S. Trenn. On observability of switched differential-algebraic equations. Proc. 49th IEEE Conf. Decis. Control, Atlanta, USA. 2010:5656–5661. DOI: 10.1109/CDC.2010.5717685.
[48] S. Trenn. “Distributional differential algebraic equations”. PhD thesis. Universitätsverlag Ilmenau, Germany: Institut für Mathematik, Technische Universität Ilmenau, 2009. URL: http://www.dbthueringen.de/servlets/DocumentServlet?id=13581.
[49] S. Trenn. Distributional restriction impossible to define. Examples and Counterexamples. Nov. 30, 2021;1(100023). open access:1–4. DOI: 10.1016/j.exco.2021.100023.
[50] S. Trenn. “Solution concepts for linear DAEs: a survey”. Surveys in Differential-Algebraic Equations I. Ed. by A. Ilchmann, T. Reis. Differential-Algebraic Equations Forum. Berlin-Heidelberg: Springer-Verlag, 2013:137–172. DOI: 10.1007/978-3-642-34928-7_4.
[51] S. Trenn. “Stability of switched DAEs”. Hybrid Systems with Constraints. Ed. by J. Daafouz, S. Tarbouriech, M. Sigalotti. Automation - Control and Industrial Engineering Series. London: Wiley, 2013:57–83. DOI: 10.1002/9781118639856.ch3.
[52] S. Trenn. “Switched differential algebraic equations”. Dynamics and Control of Switched Electronic Systems - Advanced Perspectives for Modeling, Simulation and Control of Power Converters. Ed. by F. Vasca, L. Iannelli. London: Springer-Verlag, 2012. Chap. 6:189–216. DOI: 10.1007/978-1- 4471-2885-4_6.
[53] S. Trenn, M. S. Hossain. MRswDAE - model reduction for switched DAEs - matlab scripts. 2023. DOI: 10.5281/zenodo.8133788.
[54] S. Trenn, Sutrisno, D. D. Thuan, P. Ha. “Model reduction of singular switched systems in discrete time”. submitted. 2024. URL: https://stephantrenn.net/wp-content/uploads/2025/01/ Preprint-TSTP241108.pdf.
[55] S. Trenn, F. R. Wirth. Linear switched DAEs: Lyapunov exponent, converse Lyapunov theorem, and Barabanov norm. Proc. 51st IEEE Conf. Decis. Control, Maui, USA. 2012:2666–2671. DOI: 10.1109/CDC.2012.6426245.
[56] G. C. Verghese, B. C. Levy, T. Kailath. A generalized state-space for singular systems. IEEE Trans. Autom. Control. 1981;26(4):811–831. DOI: 10.1109/TAC.1981.1102763.
[57] P. Wijnbergen, S. Trenn. Optimal control of DAEs with unconstrained terminal costs. Proc. 60th IEEE Conf. Decis. Control, Austin, USA. 2021:5275–5280. DOI: 10.1109/CDC45484.2021. 9682950.
[58] K.-T. Wong. The eigenvalue problem λTx+Sx. J. Diff. Eqns. 1974;16:270–280. DOI: 10.1016/ 0022-0396(74)90014-X.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Md. Sumon Hossain, Stephan Trenn
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-01-02
Published 2025-02-04
Funding data
-
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Grant numbers Vidi-grant 639.032.733