Index Concepts for Linear Differential-Algebraic Equations in Infinite Dimensions
DOI:
https://doi.org/10.52825/dae-p.v2i.2514Keywords:
Differential-Algebraic Equations, Index, Partial Differential Equations, Functional AnalysisAbstract
Different index concepts for regular linear differential-algebraic equations are defined and compared in the general Banach space setting. For regular finite dimensional linear differential-algebraic equations, all these indices exist and are equivalent. For infinite dimensional systems, the situation is more complex. It is proven that although some indices imply others, in general they are not equivalent. The situation is illustrated with a number of examples.
Downloads
References
[1] A. Arnal, P. Siegl. Generalised Airy operators. arXiv:2208.14389. 2022.
[2] T. Berger, A. Ilchmann, S. Trenn. The quasi-Weierstrass form for regular matrix pencils. English. Linear Algebra Appl. 2012;436(10):4052–4069.
[3] C. I. Byrnes, D. S. Gilliam, A. Isidori, V. I. Shubov. Zero dynamics modeling and boundary feedback design for parabolic systems. Math. Comput. Modelling. 2006;44(9-10):857–869.
[4] S. L. Campbell. Singular systems of differential equations. II. English. Vol. 61. Res. Notes Math., San Franc. Pitman Publishing, London, 1982.
[5] S. Campbell, W. Marszalek. The index of an infinite dimensional implicit system. Mathematical and Computer Modelling of Dynamical Systems. 1999;5(1):18–42.
[6] S. L. Campbell. High-index differential algebraic equations. Mechanics of Structures and Machines. 1995;23(2):199–222.
[7] S. L. Campbell, C. W. Gear. The index of general nonlinear DAEs. en. Numerische Mathematik. Dec. 1995;72(2):173–196.
[8] K.-J. Engel, R. Nagel. One-parameter semigroups for linear evolution equations. English. Vol. 194. Grad. Texts Math. Berlin: Springer, 2000.
[9] M. Erbay, B. Jacob, K. Morris. On the weierstraß form of infinite dimensional differential algebraic equations. J. Evol. Equ. Sept. 2024;24(73).
[10] H. Gernandt, F. E. Haller, T. Reis. A linear relation approach to port-Hamiltonian differential-algebraic equations. English. SIAM J. Matrix Anal. Appl. 2021;42(2):1011–1044.
[11] H. Gernandt, T. Reis. A pseudo-resolvent approach to abstract differential-algebraic equations. arXiv:2312.02303. Dec. 2023.
[12] J. L. Goldberg. Functions with positive real part in a half-plane. Duke Mathematical Journal. 1962;29(2):333 –339.
[13] E. Griepentrog, M. Hanke, R. M¨arz. Toward a better understanding of differential algebraic equations (Introductory survey). Humboldt-Universit¨at zu Berlin, Mathematisch-Naturwissenschaftliche Fakult¨at II, Institut f¨ur Mathematik, 1992.
[14] B. Helffer. Spectral theory and its applications. English. Vol. 139. Camb. Stud. Adv. Math. Cambridge: Cambridge University Press, 2013.
[15] B. Jacob, K. Morris. On solvability of dissipative partial differential-algebraic equations. IEEE Control Syst. Lett. 2022;6:3188–3193.
[16] B. Jacob, H. Zwart. Linear port-Hamiltonian systems on infinite-dimensional spaces. English. Vol. 223. Oper. Theory: Adv. Appl. Basel: Birkh¨auser, 2012.
[17] P. Kunkel, V. Mehrmann. Differential-algebraic equations. Analysis and numerical solution. English. Z¨urich: European Mathematical Society Publishing House, 2006.
[18] R. Lamour, R. M¨arz, C. Tischendorf. Differential-algebraic equations: a projector based analysis. Differential-Algebraic Equations Forum. Springer Science & Business Media, 2013.
[19] W. Lucht, K. Strehmel, C. Eichler-Liebenow. Indexes and special discretization methods for linear partial differential algebraic equations. BIT Numerical Mathematics. 1999;39:484–512.
[20] C. Mehl, V. Mehrmann, M. Wojtylak. Matrix pencils with coefficients that have positive semidefinite Hermitian parts. English. SIAM J. Matrix Anal. Appl. 2022;43(3):1186–1212.
[21] C. Mehl, V. Mehrmann, M. Wojtylak. Spectral theory of infinite dimensional dissipative Hamiltonian systems. 2024.
[22] V. Mehrmann. “Index Concepts for Differential-Algebraic Equations”. Encyclopedia of Applied and Computational Mathematics. Ed. by B. Engquist. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015:676–681.
[23] V. Mehrmann, H. Zwart. Abstract dissipative Hamiltonian differential-algebraic equations are everywhere. DAE Panel. Aug. 2024;2.
[24] K. Morris, A. ¨Ozer. Modeling and stabilizability of voltage-actuated piezoelectric beams with magnetic effects. SIAM J. Control Optim. 2014;52(4):2371–2398.
[25] K. Morris, R. Rebarber. Feedback invariance of SISO infinite-dimensional systems. English. Math. Control Signals Systems. 2007;19(4):313–335.
[26] P. J. Rabier, W. C. Rheinboldt. “Theoretical and numerical analysis of differential-algebraic equations”. Solution of Equations in IR (Part 4), Techniques of Scientific Computing (Part4), Numerical Methods for Fluids (Part 2). Vol. 8. Handbook of Numerical Analysis. Elsevier, Jan. 2002:183–540.
[27] S. Reich. On a geometrical interpretation of differential-algebraic equations. en. Circuits Systems Signal Process. Dec. 1990;9(4):367–382.
[28] T. Reis, T. Selig. Zero dynamics and root locus for a boundary controlled heat equation. Math. Control Signals Systems. 2015;27(3):347–373.
[29] T. Reis. Consistent initialization and perturbation analysis for abstract differential-algebraic equations. Math. Control Signals Systems. 2007;19(3):255–281.
[30] T. Reis, C. Tischendorf. Frequency domain methods and decoupling of linear infinite dimensional differential algebraic systems. J. Evol. Equ. 2005;5(3):357–385.
[31] G. A. Sviridyuk, V. E. Fedorov. Linear Sobolev type equations and degenerate semigroups of operators. English. Inverse Ill-Posed Probl. Ser. Utrecht: VSP, 2003.
[32] S. Trostorff. “Semigroups associated with differential-algebraic equations”. Semigroups of Operators–Theory and Applications: SOTA, Kazimierz Dolny, Poland, September/October 2018. Springer, 2020:79–94.
[33] S. Trostorff, M. Waurick. On higher index differential-algebraic equations in infinite dimensions. Diversity and Beauty of Appl. Operator Theory. Vol. 268. Operator Theory: Advances and Applications. Springer, Jan. 2018:477–486.
[34] K.-T. Wong. The eigenvalue problem λ T x + Sx. English. J. Diff. Eqns. 1974;16:270–280.
[35] H. J. Zwart. Geometric Theory for Infinite Dimensional Systems. Springer-Verlag, 1989.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mehmet Erbay, Birgit Jacob, Kirsten Morris, Timo Reis, Caren Tischendorf
This work is licensed under a Creative Commons Attribution 4.0 International License.