On Linear Quadratic Optimal Control and Algebraic Riccati Equations for Infinite-Dimensional Differential-Algebraic Equations
DOI:
https://doi.org/10.52825/dae-p.v2i.1388Keywords:
Linear Quadratic Optimal Control, Algebraic Riccati Equation,, Infinite-Dimensional SystemsAbstract
We consider linear quadratic optimal control for a very general class of infinite-dimensional differential-algebraic equations (namely, the class of future-resolvable input/state/output nodes) and obtain an algebraic Riccati equation.
Downloads
References
[1] A. Alalabi, K. Morris. Finite-time linear-quadratic optimal control of partial differential-algebraic equations. arXiv: 2404.03766. 2024.
[2] D. Z. Arov, O. J. Staffans. Linear state/signal systems. Vol. 183. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2022.
[3] D. J. Bender, A. J. Laub. The linear-quadratic optimal regulator for descriptor systems. IEEE Trans. Automat. Control. 1987;32(8):672–688.
[4] T. Berger, T. Reis. “Controllability of linear differential-algebraic systems—a survey”. Surveys in differential-algebraic equations. I. Differ.-Algebr. Equ. Forum. Springer, Heidelberg, 2013:1–61.
[5] D. Cobb. Descriptor variable systems and optimal state regulation. IEEE Trans. Automat. Control. 1983;28(5):601–611.
[6] M. Erbay, B. Jacob, K. Morris, T. Reis, C. Tischendorf. Index concepts for linear differential- algebraic equations in finite and infinite dimensions. DAE Panel. 2024;2.
[7] T. Geerts. Linear-quadratic control with and without stability subject to general implicit continuous- time systems: coordinate-free interpretations of the optimal costs in terms of dissipation inequality and linear matrix inequality; existence and uniqueness of optimal controls and state trajectories. Linear Algebra Appl. 1994;203/204:607–658.
[8] H. Gernandt, T. Reis. A pseudo-resolvent approach to abstract differential-algebraic equations. arXiv: 2312.02303. 2023.
[9] H. Gernandt, T. Reis. Linear-quadratic optimal control for abstract differential-algebraic equations. IFAC-PapersOnLine. 2024;58(17). 26th International Symposium on Mathematical Theory of Networks and Systems MTNS 2024:310–315.
[10] B. Jacob, K. Morris. On solvability of dissipative partial differential-algebraic equations. IEEE Control Systems Letters. 2022;6:3188–3193.
[11] T. Katayama, K. Minamino. Linear quadratic regulator and spectral factorization for continous-time descriptor systems. Proceedings of the 31st IEEE Conference on Decision and Control. 1992:967– 972 vol.1.
[12] V. Mehrmann, H. Zwart. Abstract dissipative Hamiltonian differential-algebraic equations are everywhere. DAE Panel. 2024;2.
[13] M. R. Opmeer. Infinite-dimensional linear systems: a distributional approach. Proc. London Math. Soc. (3). 2005;91(3):738–760.
[14] M. R. Opmeer, O. J. Staffans. Optimal control on the doubly infinite continuous time axis and coprime factorizations. SIAM J. Control Optim. 2014;52(3):1958–2007.
[15] M. R. Opmeer, O. J. Staffans. Optimal state feedback input-output stabilization of infinite- dimensional discrete time-invariant linear systems. Complex Anal. Oper. Theory. 2008;2(3):479– 510.
[16] T. Reis, O. Rendel, M. Voigt. The Kalman-Yakubovich-Popov inequality for differential-algebraic systems. Linear Algebra Appl. 2015; 485:153–193.
[17] T. Reis, M. Voigt. Linear-quadratic optimal control of differential-algebraic systems: the infinite time horizon problem with zero terminal state. SIAM J. Control Optim. 2019;57(3):1567–1596.
[18] O. Staffans. Well-posed linear systems. Vol. 103. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2005.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mark Opmeer, Olof Staffans
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-11-23
Published 2024-12-02