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1 Introduction

Evolutionary Equations as introduced in the seminal paper [11] provide a Hilbert space perspective to-
wards numerous (both linear and non-linear) time-dependent phenomena in mathematical physics. We
refer to the monographs [12, 18] for a set of examples as well as further development of the theory. It is
instrumental for the success of the theory of evolutionary equations that many (if not all) equations from
mathematical physics can be written as a time-dependent partial differential-algebraic equation. Then,
establishing the time-derivative as an m-accerive, normal operator in some weighted Hilbert space and
gathering all the other unbounded operators (i.e., spatial derivative operators) in an abstract m-accretive
operator A defined on some Hilbert space encoding the spatial variables, one can write evolutionary
equation as an operator equation in the following form

(∂0M0 +M1 +A)U = F, (1)

where ∂0 is the time-derivative, U is the unknown, F models external forces and M0 and M1 are linear
operators in the considered space-time Hilbert space, which is a tensor product Hilbert space putting
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together temporal and spatial variables. Any standard solution theory for evolutionary equations of the
form (1) provides conditions on the so-called material law oparators, M0 and M1, so that

(∂0M0 +M1 +A)− c

becomes m-accretive in the space-time Hilbert space. Quickly recall that an operator T in some Hilbert
space is accretive1, if for all u ∈ dom(T ),

⟨u,Tu⟩ ≥ 0.

T is m-accretive, if T is accretive and T +λ is onto for all λ > 0 (or equivalently for some λ > 0). Look-
ing into the different proofs under the various assumptions on the material law operators, one realises that
the principal mechanism of showing m-accretivity is based on the following general well-known fact.

Theorem 1.1 (see also [5, Chapter 3, Theorem 1.43]). Let H be a Hilbert space and T : dom(T )⊆ H →
H a densely defined and closed linear operator. Then the following conditions are equivalent:

(i) T is m-accretive;
(ii) T and T ∗ are accretive.

If T − c is m-accretive for some c > 0, then 0 ∈ ρ(T ).

In order to apply the last theorem showing m-accretivity of T := (∂0M0 +M1 +A)− c, it is necessary
to work out the adjoint of T , which, applying standard results, boils down to computing the adjoint
of (∂0M0 +M1 +A) in the space-time Hilbert space. Since both ∂0M0 and A are generally speaking
unbounded operators, this is a non-trivial task. Our general abstract theorem provides conditions as to
when for two densely defined, possibly unbounded operators S and V , we have (S+V )∗ = S∗+V ∗. This
question has been addressed for instance in [8] and the references therein. In [8] criteria are provided to
ensure (S+V )∗ = S∗+V ∗, which in the case of the applications in the present manuscript cannot be used
since the right-hand side is (almost never) closed. Moreover, a related question is whether the sum of two
unbounded operators (not necessarily adjoints) is closable and whether one can – in one way or another
– obtain an expression for this closure. Questions in this range have been posed and answered in the
seminal papers by [16] and [3]; we also refer to [17]. In these papers also conditions for the invertibility
of the operator sum are provided. The tools and results are developed for the general Banach space
case for general sums, not necessarily of the sum of two adjoints of some given operators. Hence, the
derived methods require conditions that are necessarily more involved compared to the present Hilbert
space setting. For instance, note that closability alone for S∗+V ∗ in the present Hilbert space setting is
equivalent to dom(S)∩dom(V ) being dense.

In any case, once a formula of the type

(∂0M0 +M1 +A)∗ =
(
(∂0M0 +M1)

∗+A∗
)

is established, the accretivity of T (and of T ∗) follow from m-accretivity of ∂0M0+M1. Thus, conditions
for (1) being well-posed need to address the two facts: computing the adjoint in the way sketched above
needs to be possible and the problem needs to be m-accretive if A = 0.

The aim of this article is to understand the situation for the case M0 = M0(m0) and M1 = M1(m0) are
multiplication operators of multiplying in the time-variable by t 7→ M0(t) and t 7→ M1(t), respectively. It
is known that Lipschitz continuous M0 allows for computing the adjoint as above and suitable positive
definiteness conditions for M0 together with its (a.e. existing) derivative M′

0 and M1 lead to m-accretivity
for the case A = 0, see [14] or [18, Chapter 16].

1We assume every Hilbert space to be real.
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A particular instance of the perspective of using operator sums to understand partial differential equations
has been provided (at least) as early as [16]. However, the methods fail to apply in a straightforward
manner as the coefficient M0 is allowed to have a non-trivial kernel here (at least in the case of Lipschitz
continuous M0). We illustrate our findings in the non Lipschitz case by means of an example later on;
note that this particular instance was addressed in [2]. Even though we were not able to fully rectify
the arguments mentioned in this reference, their major application is concerned with continuous-in-time
coefficients anyway. It seems that this condition is crucial for evolution families to be applicable. Thus,
in case of non-Lipschitz continuous M0, we establish well-posedness for a system of equations other
methods (such as evolution families or evolution semigroups, see [4, Chapter VI, Section 9] and [9]) are
structurally deemed to fail.

The next section is concerned with some functional analytic preliminaries, which we shall find useful
in the subsequent parts. The subsequent section contains our main result concerning operator sums of
m-accretive operators. The second to last section deals with applications to evolutionary equations. We
summarise our findings and open problems in the conclusion section.

2 Preliminaries

Throughout this section, let H0,H1,H2 be Hilbert spaces.

Lemma 2.1. Let T : dom(T ) ⊆ H0 → H1 be a closed linear operator and B : H1 → H2 bounded and
linear. Then, if B is one-to-one and has closed range, BT is closed.

Proof. The closed graph theorem yields that the adstriction B̃ : H1 → ran(B) of B is a continuously
invertible operator. Next, let (xn)n be in dom(BT ) such that xn → x and BT xn → y in H0 and H2 as
n → ∞ for some x ∈ H0 and y ∈ H2, respectively. Then, by the continuity of (B̃)−1, we infer T xn =(
B̃
)−1 BT xn →

(
B̃
)−1 y in H1 as n → ∞. By the closedness of T , we obtain x ∈ dom(T )⊆ dom(BT ) and

T x =
(
B̃
)−1 y. Applying B̃ to both sides of the latter equality, we infer y = BT x as desired.

Theorem 2.2. Let T : dom(T )⊆ H0 → H1 be closed, B : H2 → H0 be a bounded linear operator. Then,
as an identity of relations, we have

(T B)∗ = B∗T ∗.

Moreover, T B is densely defined if and only if B∗T ∗ is a closable operator. If, B∗ is one-to-one and has
closed range and T is densely defined, then B∗T ∗is closed. In particular, in this case, we have T B is
densely defined and

(T B)∗ = B∗T ∗.

Proof. The first statement is a consequence of [18, Theorem 2.3.4]. The stated equivalence follows from
(T B)∗ = B∗T ∗ in conjunction with [18, Lemma 2.2.7]. Finally, the statement containing B∗T ∗ closed is
a direct consequence of Lemma 2.1.

Remark 2.3. The assumptions on B∗ are equivalent to B being onto. Indeed, by the closed range theorem,
the closed range of B is then inherited by B∗ and the equation H0 = ker(B∗)⊕ ran(B) yields that (almost)
surjectivity of B is equivalent to injectivity of B∗.

Theorem 2.4. Let T : dom(T ) ⊆ H0 → H0 be densely defined and closed, B : H0 → H0 be bounded,
linear operator mapping onto H0. Then

(B∗T B)∗ = B∗T ∗B.
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Proof. By Lemma 2.1 and Remark 2.3, B∗T is closed. It is – trivially – densely defined as so is T . Hence,
by Theorem 2.2, we deduce

((B∗T )B)∗ = B∗(B∗T )∗.

Next, since (B∗T )∗ is a closed linear operator as the adjoint of a densely defined operator and as B∗ is
one-to-one with closed range (see Remark 2.3), B∗(B∗T )∗ is closed by Lemma 2.1; i.e., B∗(B∗T )∗ =
B∗(B∗T )∗. Next, we compute (B∗T )∗. For this, using Theorem 2.2 again, we deduce

(T ∗B)∗ = B∗T ∗∗ = B∗T = B∗T = B∗T,

as B∗T is closed, again by Lemma 2.1. Computing adjoints on both sides, we infer

T ∗B = (T ∗B)∗∗ = (B∗T )∗ ,

where we used that T ∗B is closed. As a consequence of the above, we get

((B∗T )B)∗ = B∗(B∗T )∗ = B∗T ∗B.

Proposition 2.5. Let T : dom(T ) ⊆ H0 → H0 be densely defined and closed and B : H0 → H0 be a
topological isomorphism. If D ⊆ dom(T ) is a core for T (i.e., T |D = T ) , then B−1[D] is a core for B∗T B.

Proof. B being a topological isomorphism, B−1 maps dense sets onto dense sets; thus B−1[D] is dense
in H0. Also it is elementary to see that B−1[D]⊆ dom(B∗T B). Finally, let x ∈ dom(B∗T B) = dom(T B).
Then Bx ∈ dom(T ). By assumption, we find (yn)n in D such that yn → Bx and Tyn → T Bx in H0 as
n → ∞. Defining xn := B−1yn ∈ B−1[D], we get xn → B−1Bx = x and T Bxn = Tyn → T Bx as n → ∞. The
continuity of B∗ yields the assertion.

3 Adjoints of Sums of m-accretive Operators

This section is devoted to computing the adjoint of a sum of two (unbounded) operators T and S both
densely defined and closed on a Hilbert space H. The aim is to provide conditions so that

(S+T )∗ = S∗+T ∗.

We refer to [13], where several conditions for this equality were given. In a Hilbert space H, (xn)n in
H is said to converge weakly to some x ∈ H, xn ⇀ x, if for all φ ∈ H, ⟨xn,φ⟩ → ⟨x,φ⟩. For a family
(Rε)ε>0 of bounded linear operators from a Hilbert spaces H0 into H1, we say (Rε)ε>0 converges in the
weak operator topology to some bounded linear operator T : H0 → H1, if, for all φ ∈ H0, Rεφ ⇀ T φ as
ε → 0. The main theorem, which in turn is relevant to the applications we have in mind, reads as follows:

Theorem 3.1. Let T : dom(T ) ⊆ H0 → H1 and S : dom(S) ⊆ H0 → H1 be two densely defined closed
operators such that dom(S)∩ dom(T ) is dense. Moreover, we assume that there exist families (Lε)ε>0
(Kε)ε>0 and (K̃ε)ε>0 in L(H1) and (Rε)ε>0, in L(H0) such that Lε → 1H1 , Rε → 1H0 and Kε , K̃ε → 0 in
the weak operator topology as ε → 0. Moreover, assume that

LεS ⊆ SRε +Kε ,

LεT ⊆ T Rε + K̃ε (2)

and
L∗

ε [dom((S+T )∗)]⊆ dom(S∗)∩dom(T ∗). (3)

Then
(S+T )∗ = S∗+T ∗.
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Proof. Since in general S∗+T ∗ ⊆ (S+T )∗ (see [18, Theorem 2.3.2]) it suffices to prove the remaining
inclusion. So, let u ∈ dom(S+T )∗ and set uε := L∗

εu ∈ dom(S∗)∩dom(T ∗). Let v ∈ dom(S)∩dom(T ).
Then

⟨(S∗+T ∗)uε ,v⟩= ⟨L∗
εu,(S+T )v⟩

= ⟨u,Lε(S+T )v⟩
= ⟨u,(S+T )Rεv+(Kε + K̃ε)v⟩
= ⟨

(
R∗

ε(S+T )∗+(Kε + K̃ε)
∗)u,v⟩.

Since dom(S)∩dom(T ) is dense, we thus infer

(S∗+T ∗)uε =
(
R∗

ε(S+T )∗+(Kε + K̃ε)
∗)u ⇀ (S+T )∗u,

where we have used R∗
ε → 1H0 and (Kε + K̃ε)

∗ → 0 in the weak operator topology. Since also uε ⇀ u
(use again L∗

ε → 1H1 in the weak operator topology), we infer that u ∈ dom
(
S∗+T ∗

)
with(

S∗+T ∗
)

u = (S+T )∗u.

Remark 3.2. If SRε is bounded and dom(S)∩ dom(T ) is a core for T in the above theorem, then (3)
holds true. Indeed, from (2) we infer

(SRε +Kε)
∗ ⊆ (LεS)∗ = S∗L∗

ε .

If now SRε is bounded, the operator on the left-hand side in the above inclusion is bounded, and hence,
the operator on the right-hand side is defined on H1, meaning that ran(L∗

ε) ⊆ dom(S∗). Hence, for
u ∈ dom(T )∩dom(S) and v ∈ dom((S+T )∗) we get

⟨Tu,L∗
εv⟩= ⟨(S+T )u−Su,L∗

εv⟩
= ⟨Lε(S+T )u,v⟩−⟨u,S∗L∗

εv⟩
= ⟨(S+T )Rεu+(Kε + K̃ε)u,v⟩−⟨u,S∗L∗

εv⟩
= ⟨u,R∗

ε(S+T )∗v+(Kε + K̃ε)
∗v−S∗L∗

εv⟩

and since dom(T )∩dom(S) is a core for T , we infer that also L∗
εv ∈ dom(T ∗).

Theorem 3.3. Let S : dom(S)⊆ H → H and T : dom(T )⊆ H → H both m-accretive. If (1+T )−1(1+
S)−1 = (1+S)−1(1+T )−1, then dom(S)∩dom(T ) is dense in H and

(S+T )∗ = S∗+T ∗.

Remark 3.4. Note that the conditions of Theorem 3.3 only provide a sample set of conditions sufficient
for providing an example case for Theorem 3.1. In fact, some version of Theorem 3.3, which is a weaker
variant than Theorem 3.1 has been used to provide a well-posedness result for (other) evolutionary
equations, see [10, Lemma 1.1]. In fact, a bounded commutator assumption for S and T as well as
the condition that ε 7→ (1+ εT )−1 and ε 7→ (1+ εS)−1 define uniformly bounded families of bounded
linear operators on some neighbourhood of 0 is sufficient. In order to have a result readily applicable
to the situation interesting for us in the following, we have opted to present a less general application of
Theorem 3.1 (the most general situation provided here, is covered by Theorem 3.1 anyway).

Before we prove Theorem 3.3, we draw some elementary consequences of the commutator condition. A
first consequence of this will be that S+T is densely defined.
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Proposition 3.5. Under the conditions of Theorem 3.3, the following holds:

(i) For all ε > 0, we have
(1+ εS)−1T ⊆ T (1+ εS)−1.

(ii) dom(S)∩dom(T ) is a core for T . In particular, dom(S)∩dom(T ) is dense in H.

Proof. For the first statement, we observe that (1+T )−1(1+S)−1 = (1+S)−1(1+T )−1 yields

(1+S)−1(1+T )⊆ (T +1)(1+S)−1.

As a consequence,
(1+S)−1T ⊆ T (1+S)−1.

By [18, Lemma 9.3.3 (a)], we deduce for all ε > 0 that

(1+ εS)−1T =
1
ε
(

1
ε
+S)−1T ⊆ T

1
ε
(

1
ε
+S)−1 = T (1+ εS)−1.

The second statement is based on the observation that (1+ εS)−1 → 1 as ε → 0+ in the strong operator
topology (this follows from the strong convergence on dom(S) and the uniform boundedness of the
resolvents). Let now x ∈ dom(T ) and define xε := (1+ εS)−1x. Then, xε → x as ε → 0+ and by part 1
of the present proposition, we deduce xε ∈ dom(T ) and

T xε = (1+ εS)−1T x → T x,

yielding that dom(T )∩dom(S) is a core for T .

Proof of Theorem 3.3. We apply Theorem 3.1. By Proposition 3.5 we see that for Lε := Rε := (1+εS)−1

and Kε = K̃ε = 0 the relations (2) are satisfied. Furthermore, by Proposition 3.5 we have that dom(S)∩
dom(T ) is dense and a core for T. Since clearly SRε is bounded, Remark 3.2 gives that also (3) is satisfied.
Thus, the assertion follows from Theorem 3.1.

4 Applications to Evolutionary Equations

This section is devoted to apply the previous findings to operator equations in weighted, vector-valued
L2-type spaces. The general setting can be found in [12, 18]. Throughout, let H be a Hilbert space and
for ρ ∈ R we let

L2,ρ(R;H) := { f ∈ L2,loc(R;H);
∫
R
∥ f (t)∥2

H exp(−2ρt)dt < ∞},

endowed with the obvious norm and corresponding scalar product. We define

∂0 : H1
ρ(R;H)⊆ L2,ρ(R;H)→ L2,ρ(R;H),φ 7→ φ

′.

For ρ > 0, it can be shown that ∂0 is m-accretive with ℜ∂0 = ρ .

For a bounded, strongly measurable, operator-valued function M : R→ L(H), we denote by

M(m0) ∈ L(L2,ρ(R;H))

the associated multiplication operator of multiplying by M. In applications, M will be induced by scalar-
valued measurable functions; that is, M ∈ L∞(R). We will work under the following standing hypothesis.

Hypothesis 4.1. (i) Let A : dom(A)⊆ H → H be m-accretive.

6



Rainer Picard et al. | Adjoints of sums and evolutionary equations

(ii) Let M0,M1 : R→ L(H) be strongly measurable and uniformly bounded.
(iii) M0(m0)

∗ = M0(m0).

Here we have employed the custom to re-use the notation A for the (canonically) extended operator
defined on L2,ρ(R;H) with domain L2,ρ(R;dom(A)). The aim is to study the well-posedness of non-
autonomous problems of the form

(∂0M0(m0)+M1(m0)+A)U = F (4)

under suitable commutator conditions of M0(m0) with ∂0 or with A.

Bounded Commutator with ∂0

We begin to study the case when M0(m0) and ∂0 have a bounded commuator; that is, we assume there
exists a strongly measurable and uniformly bounded mapping M′

0 : R→ L(H) such that

M0(m0)∂0 ⊆ ∂M0(m0)−M′
0(m0). (5)

Remark 4.2. In [14] it was shown that this assumption is equivalent to the Lipschitz-continuity of M0.
In this case, M0 is differentiable almost everywhere and M′

0 is just the so-defined derivative of M0.

Moreover, we impose the following accretivity condition on M0(m0) and M1(m0):

∃c > 0, ρ0 > 0∀ρ ≥ ρ0 : ρM0(t)+
1
2

M′
0(t)+M1(t)≥ c (t ∈ R a.e.). (6)

Lemma 4.3. Assume Hypothesis 4.1 together with (5) and (6). Then for each ρ ≥ ρ0 the operator

∂0M0(m0)+M1(m0)− c

is accretive. Moreover, dom(∂0) is a core for this operator.

Proof. If u ∈ dom(∂0) we infer

2⟨(∂0M0(m0)+M1(m0))u,u⟩= ⟨(∂0M0(m0)+M0(m0)∂0)u,u⟩+ ⟨M′
0(m0)u,u⟩+2⟨M1(m0)u,u⟩.

Moreover, with ∂ ∗
0 =−∂0 +2ρ (see [18, Corollary 3.2.6])

⟨∂0M0(m0)u,u⟩= ⟨u,M0(m0)∂
∗
0 u⟩

=−⟨u,M0(m0)∂0u⟩+2ρ⟨u,M0(m0)u⟩,

which gives
⟨(∂0M0(m0)+M0(m0)∂0)u,u⟩= 2ρ⟨u,M0(m0)u⟩.

Summarising, we obtain

⟨(∂0M0(m0)+M1(m0))u,u⟩= ⟨
(

ρM0(m0)+
1
2

M′
0(m0)+M1(m0)

)
u,u⟩ ≥ c∥u∥2.

It remains to prove that dom(∂0) is a core for ∂0M0(m0). This however follows from

(1+ ε∂0)
−1M0(m0) = M0(m0)(1+ ε∂0)

−1 − ε(1+ ε∂0)
−1M′

0(m0)(1+ ε∂0)
−1,

7
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which gives

(1+ ε∂0)
−1

∂0M0(m0) = ∂0M0(m0)(1+ ε∂0)
−1 − ε∂0(1+ ε∂0)

−1M′
0(m0)(1+ ε∂0)

−1.

If now u ∈ dom(∂0M0(m0)) we set uε := (1+ ε∂0)
−1u ∈ dom(∂0) and since (1+ ε∂0)

−1 → 1 strongly,
the latter equality proves that uε → u with respect to the graph norm of ∂0M0(m0).

We obtain [18, Theoerem 16.3.1] or the main result of [14] as a special case:

Theorem 4.4. Assume Hypothesis 4.1 together with (5) and (6). Then for each ρ ≥ ρ0 the operator

∂0M0(m0)+M1(m0)+A− c

is m-accretive and hence, ∂0M0(m0)+M1(m0)+A is boundedly invertible in L2,ρ(R;H) yielding the
well-posedness of (4).

Proof. It is clear that ∂0M0(m0)+M1(m0)+A−c is accretive as it is the sum of two accretive operators.
In order to show that its closure is m-accretive, it suffices to show that its adjoint is also accretive. For
this, we calculate its adjoint with the help of Theorem 3.1. We set S := ∂0M0(m0)+M1(m0) and T := A.
Then C∞

c (R;dom(A)) ⊆ dom(S)∩ dom(T ) is dense in L2,ρ(R;H) and it is even a core for T. Setting
Lε := (1+ ε∂0)

−1, we obtain (2) with Rε = Lε , K̃ε = 0 and

Kε = ε∂0(1+ ε∂0)
−1M′

0(m0)(1+ ε∂0)
−1.

Finally,
SRε = ∂0M0(m0)(1+ ε∂0)

−1 = (1+ ε∂0)
−1

∂0M0(m0)+Kε

is bounded, and hence, (3) holds by Remark 3.2. Thus, we can apply Theorem 3.1 and obtain

(∂0M0(m0)+M1(m0)+A)∗ = (∂0M0(m0)+M1(m0))
∗+A∗.

Since clearly A∗ is accretive, it remains to prove the strict accretivity of (∂0M0(m0)+M1(m0))
∗ =

(∂0M0(m0))
∗ + M1(m0)

∗. In order to work out the first adjoint we recall that dom(∂0) is a core for
∂0M0(m0) and hence

(∂0M0(m0))
∗ =

(
M0(m0)∂0 +M′

0(m0)
)∗

= ∂
∗
0 M0(m0)+M′

0(m0).

Now, as in Lemma 4.3 one proves that (6) yields the accretivity of ∂ ∗
0 M0(m0)+M′

0(m0)+M1(m0)−c.

Trivial Commutator with A

Here, we assume a commutator condition with A. To keep things simple, we assume that

there exists d > 0 such that M0(t)≥ d for almost every t ∈ R (7)

and that
M0(m0)A ⊆ AM0(m0). (8)

Lemma 4.5. Assume Hypothesis 4.1 together with (7) and (8), we have

M0(m0)A = AM0(m0).

Proof. The inclusion M0(m0)A ⊆ AM0(m0) leads to

M0(m0)(A+1)⊆ (A+1)M0(m0).
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Now, the right-hand side operator is one-to-one and the left-hand side is onto. Hence,

M0(m0)(A+1) = (A+1)M0(m0),

which yields the assertion

Remark 4.6. It is a consequence of the definition of the square root (see also [12, Theoerem B.8.2 and
its proof]) that

M0(m0)A ⊆ AM0(m0)

leads to
M0(m0)

1/2A ⊆ AM0(m0)
1/2;

thus, by Lemma 4.5, it follows
M0(m0)

1/2A = AM0(m0)
1/2.

In particular, we obtain
M0(m0)

−1/2A = AM0(m0)
−1/2.

For motivating the main result of this section, we recall the evolutionary equation from (4)

(∂0M0(m0)+M1(m0)+A)U = F.

After multiplication by M0(m0)
1/2 the latter can be rewritten as(

M0(m0)
1/2

∂0M0(m0)
1/2 +M0(m0)

1/2(M1(m0)+A
)
M0(m0)

−1/2
)

M0(m0)
1/2U

= M0(m0)
1/2F.

Using the latter remark and (8), we get(
M0(m0)

1/2
∂0M0(m0)

1/2 +M0(m0)
1/2M1(m0)M0(m0)

−1/2 +A
)

M0(m0)
1/2U = M0(m0)

1/2F.

Remark 4.7. If instead of the above equation, we consider

(M0(m0)∂0 +M1(m0)+A)U = F,

we may multiply by M0(m0)
−1/2 instead and eventually obtain(

M0(m0)
1/2

∂0M0(m0)
1/2 +M0(m0)

−1/2M1(m0)M0(m0)
1/2 +A

)
M0(m0)

−1/2U = M0(m0)
−1/2F,

being basically of the same shape of equation as the one above with ∂0M0(m0).

The main result of this section is the following.

Theorem 4.8. Assume Hypothesis 4.1 together with (7) and (8). Then(
M0(m0)

1/2
∂0M0(m0)

1/2 +M0(m0)
1/2M1(m0)M0(m0)

−1/2 +A
)∗

=
(
M0(m0)1/2∂ ∗

0 M0(m0)1/2 +M0(m0)−1/2M1(m0)∗M0(m0)−1/2 +A∗
)
.

Proof. First of all note that M0(m0)
1/2M1(m0)M0(m0)

−1/2 is a bounded linear operator and can, thus, be
assumed to be 0 when computing the adjoint. Next,(

M0(m0)
1/2

∂0M0(m0)
1/2

)∗
= M0(m0)

1/2
∂
∗
0 M0(m0)

1/2

9
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by Theorem 2.4 applied to T = ∂0 and B = M0(m0)
1/2 = B∗. Note that it particularly follows that(

M0(m0)
1/2

∂0M0(m0)
1/2

)
is m-accretive. Thus, for proving the present theorem, it suffices to apply Theorem 3.3 to T =
M0(m0)

1/2∂0M0(m0)
1/2 and S = A. What remains is to show the commutativity of the resolvents:

(1+T )−1 (1+S)−1 = (1+M0(m0)
1/2

∂0M0(m0)
1/2)−1(1+A)−1

= (M0(m0)
1/2(M0(m0)

−1 +∂0)M0(m0)
1/2)−1(1+A)−1

= M0(m0)
−1/2(M0(m0)

−1 +∂0)
−1M0(m0)

−1/2(1+A)−1

= M0(m0)
−1/2(M0(m0)

−1 +∂0)
−1(1+A)−1M0(m0)

−1/2

= M0(m0)
−1/2 ((1+A)(M0(m0)

−1 +∂0)
)−1

M0(m0)
−1/2

= M0(m0)
−1/2 ((M0(m0)

−1 +∂0)(1+A)
)−1

M0(m0)
−1/2

= (1+S)−1 (1+T )−1 ,

where we used (1+A)∂0 = ∂0(1+A) and Lemma 4.5 for M0(m0)
−1(1+A) = (1+A)M0(m0)

−1. Hence,
Theorem 3.3 is applicable and the assertion follows.

Lemma 4.9. Assume Hypothesis 4.1 together with (7). Then, for all c > 0 there exists ρ0 > 0 such that
for each ρ ≥ ρ0 the operator

M0(m0)
1/2

∂0M0(m0)
1/2 +M0(m0)

1/2M1(m0)M0(m0)
−1/2 − c

is m-accretive on L2,ρ(R;H).

Proof. For u ∈ dom(∂0M0(m0)
1/2) we have

⟨
(

M0(m0)
1/2

∂0M0(m0)
1/2 +M0(m0)

1/2M1(m0)M0(m0)
−1/2

)
u,u⟩

= ρ∥M0(m0)
1/2u∥2 −∥M0(m0)

1/2M1(m0)M0(m0)
−1/2∥∥u∥2

≥
(

ρd −∥M0(m0)
1/2M1(m0)M0(m0)

−1/2∥
)
∥u∥2.

Choosing now ρ large enough, we infer the strict accretivity of the operator. Since its adjoint is of the
form

M0(m0)
1/2

∂
∗
0 M0(m0)

1/2 +M0(m0)
−1/2M1(m0)

∗M0(m0)
1/2

the same argument shows that for ρ large enough, this operator is also accretive, and hence, the assertion
follows.

Corollary 4.10. Assume Hypothesis 4.1 together with (7) and (8). Then the operator

∂0M0(m0)+M1(m0)+A

is boundedly invertible in L2,ρ(R;H) for ρ > 0 large enough.

Proof. In the present situation, consider
T̃ := T +S,

where T :=M0(m0)
1/2∂0M0(m0)

1/2+M0(m0)
1/2M1(m0)M0(m0)

−1/2 and S := A. We will show that T̃ −c
is m-accretive for some c > 0. By assumption and Lemma 4.9, it is not difficult to see that T̃ − c is
accretive for some c > 0 and all large enough ρ > 0. Using the formula for the adjoint in Theorem 4.8
and taking into account the accretivtiy of T ∗− c, we have that

(
T̃
)∗− c is, too, accretive. Hence, 0 ∈

10
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ρ(T̃ ). The reformulation just before Remark 4.7 yields the assertion by multiplying T̃ by the topological
isomorphism M0(m0)

−1/2 from the left and M0(m0)
1/2 from the right.

Remark 4.11. A similar result holds under the assumption that

M0(m0)
1/2

∂0M0(m0)
1/2 +M0(m0)

−1/2M1(m0)M0(m0)
1/2 − c

is m-accretive for some c > 0. Then

0 ∈ ρ

(
M0(m0)∂0 +M1(m0)+A

)
.

Next we treat a non-autonomous example of a transport equation on a graph with finitely many edges of
equal length 1. The following is merely to illustrate an example, where one can have L∞-dependence of
time-varying transport velocities in the graph. Note that well-posedness results of an autonomous version
of this kind of problems are known from [6] in L1; and [7] with spatially dependent velocities. The
corresponding non-autonomous situation has been adressed in [1] with a weak differentiability condition
on the time-dependent velocities. In the following example, we dispense with any regularity conditions
on the velocity. However, instead we need rather strong commutativity properties for the velocity matrix
with the matrix describing the boundary conditions. Note that time- and spatially dependent velocities
so that the time-dependence is Lipschitz regular can also be dealt with within an evolutionary equations
setting. Indeed, the perspective provided in [15] together with the (abstract) non-autonomous well-
posedness result in [18, Theorem 16.3.1] or [14, Theorem 2.13] can be understood in this way. This
particularly emphasises the interest of PDEs with L∞-time dependence only.

Example 4.12. Let d ∈N and consider H := L2(0,1)d . Moreover, let B∈Rd×d with ∥B∥≤ 1 and consider
the operator A given by

dom(A) := {u ∈ H1(0,1)d ; u(0) = Bu(1)},
Au := u′.

Then A is m-accretive by [15, Theorem 4.1]. Moreover, let c1, . . . ,cd ∈ L∞(R) such that c1, . . . ,cd ≥ k > 0
almost everywhere. We set M0(t) := diag(c j(t)) and assume that BM0(t) =M0(t)B for almost every t ∈R.
Then we clearly have for u ∈ L2,ρ(R;dom(A)) that M0(m0)u ∈ L2,ρ(R;H1(0,1)d) and that

BM0(t)u(1) = M0(t)Bu(1) = M0(t)u(0);

that is, M0(m0)u ∈ L2,ρ(R;dom(A)). Moreover,

AM0(m0)u = M0(m0)u′ = M0(m0)Au,

which shows M0(m0)A ⊆ AM0(m0). Hence, by our findings above, the non-autonomous problem

(∂0M0(m0)+A)u = f

is well-posed in L2,ρ(R;L2(0,1)d) if we choose ρ large enough.

5 Conclusions

We provided applicable conditions for m-accretive operators so that the adjoint of the sum can be rep-
resented as the closure of the sum of adjoints of the individual operators. We applied this observation
to evolutionary equations and developed well-posedness criteria for the same. The case of the operator
M0 being L∞-in time only and having non-trivial (possibly time-independent) kernel remains open for

11
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easily applicable conditions establishing well-posedness. Thus, to properly address the general situation
of time-dependent partial differential algebraic equations appears to be a challenge for future research.
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