Quantifying the Distribution of Evapotranspiration at PV and APV Sites Using Soil Moisture

Authors

  • Ulrike Feistel Hochschule für Technik und Wirtschaft Dresden – University of Applied Sciences image/svg+xml https://orcid.org/0000-0001-5807-1934
  • Susanna Kettner Hochschule für Technik und Wirtschaft Dresden – University of Applied Sciences image/svg+xml
  • Jakob Ebermann Hochschule für Technik und Wirtschaft Dresden – University of Applied Sciences image/svg+xml
  • Fabian Mueller Hochschule für Technik und Wirtschaft Dresden – University of Applied Sciences image/svg+xml
  • Emese Krajcsi Hochschule für Technik und Wirtschaft Dresden – University of Applied Sciences image/svg+xml

DOI:

https://doi.org/10.52825/agripv.v2i.978

Keywords:

Evapotranspiration, Soil Moisture, Photovoltaics

Abstract

Solar panels affect the distribution of water and energy reaching the ground causing changes in soil moisture, evapotranspiration and percolation. In the context of Agri-Photovoltaics those changes influence plant growth and yield as well as irrigation demands while large Photovoltaic installations could potentially lead to changes in the water balance of the catchment. In either case, evapotranspiration plays an important role as the installation of panels of any design leads to shading thereby reducing the water loss to the soil through evapotranspiration. As it is difficult to measure evapotranspiration, the authors proceeded using soil moisture observations to quantify evapotranspiration pattern in dry periods. They found on average a 44 % higher evapotranspiration rate over 12 dry periods of varying conditions under the panels compared to a reference area at the research site Pillnitz. However, similar observations at the second site, Weesow show also a reversed behaviour due to reduced soil water availability as a result of the higher evapotranspiration at the reference area.

Downloads

Download data is not yet available.

References

Statista, Installierte Leistung der Photovoltaikanlagen weltweit in den Jahren 2011 bis 2021, Umwelt und Energietechnik, https://de.statista.com/statistik/daten/studie/232835/umfrage/weltweit-installierte-photovoltaik-leistung, (accessed 21/02/2023).

A. Götzberger, A. Zastrow, Kartoffeln unter dem Kollektor, Sonnenenergie, 3/81, pp 19-22, 1981.

M. Trommsdorff, S. Gruber, T. Keinath, Agri-Photovoltaik: Chancen für Landwirtschaft und Energiewende, Ein Leitfaden für Deutschland, pp. 5-7, 2020.

A. Burgers, L. Slooff, PV and agriculture: energy yield and ground irradiance trade-offs, TNO Energy Transition in AgriVoltaics 2020.

J. Chopard, A. Bisson, G. Lopez, S. Persello , C. Richert, D. Fumey, Development of a decision support system to evaluate crop performance under dynamic solar panels. AIP Conference Proceedings 2361, 050001, 2021, doi: https://doi.org/10.1063/5.0055119.

S. Edouard, D. Combes, M. van Iseghem, M. Ng W. Tin, , A.J. Escobar-Gutiérrez, Increasing land productivity with agriphotovoltaics: Application to an alfalfa field, Applied Energy, vol. 329, 12027, 2023, doi: https://doi.org/10.1016/j.apenergy.2022.120207.

U. Feistel, S. Werisch , P. Marx, S. Kettner, J. Ebermann, L. Wagner, Assessing the Impact of Shading by Solar Panels on Evapotranspiration and Plant Growth Using Lysimeters. AIP Conference Proceedings 2635, 150001, 2022, doi: https://doi.org/10.1063/5.0103124.

U. Feistel, S. Kettner, J. Ebermann, F. Müller, S. Werisch, Wie PV-Freiflächenanlagen den Bodenwasserhaushalt verändern – Begleitforschung im größten Solarpark Deutschlands. In M. Disse, R. Ludwig, M. Reisenbüchler (Hrsg.), Forum für Hydrologie und Wasserbewirtschaftung, 43.22, pp. 43-52, 2022, doi: https://doi.org/10.14617/for.hydrol.wasbew.43.22

T. W. Biggs, M. Marshall, and A. Messina, Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison, Water Resour. Res., vol. 52, no. 9, pp. 7311–7326, 2016, doi: https://doi.org/10.1002/2016WR019107.

T. A. Howell, A. D. Schneider, M. E. Jensen, Lysimeters for Evapotranspiration and Environmental Measurements, IR Div/ASCE/Honololu, 1991.

S. Lekshmi, D. Singh, M. Shojaei Baghini, A critical review of soil moisture measurement, Measurement, pp. 92–105, 2014, doi: http://dx.doi.org/10.1016/j.measurement.2014.04.007.

N. Shah, M. Ross, K. Trout, Using Soil Moisture Data to Estimate Evapotranspiration and Development of a Physically Based Root Water Uptake Model. In A. Irmak (ed.), Evapotranspiration - Remote Sensing and Modeling, IntechOpen, 2012, doi: https://doi.org/10.5772/18040.

A. Hess, B. Wadzuk, A. Welker, Evapotranspiration estimation in rain gardens using soil moisture sensors, Vadose zone j., vol.1, 2021, doi: https://doi.org/10.1002/vzj2.20100.

Y. Wang, Y. Zhang, X. Yu, G. Jia, Z. Liu, L. Sun, P. Zheng, X. Zhu, Grassland soil moisture fluctuation and its relationship with evapotranspiration, Ecological Indicators, p108196, 2021, doi: https://doi.org/10.1016/j.ecolind.2021.108196.

S. Reibetanz, I. Böhm, C. Schuch, D. Günnewig, M. Püschel, A. Rohr, H. de Beer, F. Herzog, C. Becker, T. Gausling, C. Kubal, M. Stoefer, Bebauungsplan „Energiepark Weesow-Willmersdorf“, Begründung einschl. Umweltbericht, 2010.

L. Zotarelli, M.D. Dukes, C.C. Romero, K.W. Migliaccio, K.T. Morgan. Step by step calculation of the Penman-Monteith evapotranspiration (FAO-56 Method). https://edis.ifas.ufl.edu/pdf/AE/AE45900.pdf (accessed 24/05/2022).

Downloads

Published

2024-05-23

How to Cite

Feistel, U., Kettner, S., Ebermann, J., Mueller, F., & Krajcsi, E. (2024). Quantifying the Distribution of Evapotranspiration at PV and APV Sites Using Soil Moisture. AgriVoltaics Conference Proceedings, 2. https://doi.org/10.52825/agripv.v2i.978

Conference Proceedings Volume

Section

Environmental Modeling

Funding data