Quantifying the Distribution of Evapotranspiration at PV and APV Sites Using Soil Moisture
DOI:
https://doi.org/10.52825/agripv.v2i.978Keywords:
Evapotranspiration, Soil Moisture, PhotovoltaicsAbstract
Solar panels affect the distribution of water and energy reaching the ground causing changes in soil moisture, evapotranspiration and percolation. In the context of Agri-Photovoltaics those changes influence plant growth and yield as well as irrigation demands while large Photovoltaic installations could potentially lead to changes in the water balance of the catchment. In either case, evapotranspiration plays an important role as the installation of panels of any design leads to shading thereby reducing the water loss to the soil through evapotranspiration. As it is difficult to measure evapotranspiration, the authors proceeded using soil moisture observations to quantify evapotranspiration pattern in dry periods. They found on average a 44 % higher evapotranspiration rate over 12 dry periods of varying conditions under the panels compared to a reference area at the research site Pillnitz. However, similar observations at the second site, Weesow show also a reversed behaviour due to reduced soil water availability as a result of the higher evapotranspiration at the reference area.
Downloads
References
Statista, Installierte Leistung der Photovoltaikanlagen weltweit in den Jahren 2011 bis 2021, Umwelt und Energietechnik, https://de.statista.com/statistik/daten/studie/232835/umfrage/weltweit-installierte-photovoltaik-leistung, (accessed 21/02/2023).
A. Götzberger, A. Zastrow, Kartoffeln unter dem Kollektor, Sonnenenergie, 3/81, pp 19-22, 1981.
M. Trommsdorff, S. Gruber, T. Keinath, Agri-Photovoltaik: Chancen für Landwirtschaft und Energiewende, Ein Leitfaden für Deutschland, pp. 5-7, 2020.
A. Burgers, L. Slooff, PV and agriculture: energy yield and ground irradiance trade-offs, TNO Energy Transition in AgriVoltaics 2020.
J. Chopard, A. Bisson, G. Lopez, S. Persello , C. Richert, D. Fumey, Development of a decision support system to evaluate crop performance under dynamic solar panels. AIP Conference Proceedings 2361, 050001, 2021, doi: https://doi.org/10.1063/5.0055119.
S. Edouard, D. Combes, M. van Iseghem, M. Ng W. Tin, , A.J. Escobar-Gutiérrez, Increasing land productivity with agriphotovoltaics: Application to an alfalfa field, Applied Energy, vol. 329, 12027, 2023, doi: https://doi.org/10.1016/j.apenergy.2022.120207.
U. Feistel, S. Werisch , P. Marx, S. Kettner, J. Ebermann, L. Wagner, Assessing the Impact of Shading by Solar Panels on Evapotranspiration and Plant Growth Using Lysimeters. AIP Conference Proceedings 2635, 150001, 2022, doi: https://doi.org/10.1063/5.0103124.
U. Feistel, S. Kettner, J. Ebermann, F. Müller, S. Werisch, Wie PV-Freiflächenanlagen den Bodenwasserhaushalt verändern – Begleitforschung im größten Solarpark Deutschlands. In M. Disse, R. Ludwig, M. Reisenbüchler (Hrsg.), Forum für Hydrologie und Wasserbewirtschaftung, 43.22, pp. 43-52, 2022, doi: https://doi.org/10.14617/for.hydrol.wasbew.43.22
T. W. Biggs, M. Marshall, and A. Messina, Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison, Water Resour. Res., vol. 52, no. 9, pp. 7311–7326, 2016, doi: https://doi.org/10.1002/2016WR019107.
T. A. Howell, A. D. Schneider, M. E. Jensen, Lysimeters for Evapotranspiration and Environmental Measurements, IR Div/ASCE/Honololu, 1991.
S. Lekshmi, D. Singh, M. Shojaei Baghini, A critical review of soil moisture measurement, Measurement, pp. 92–105, 2014, doi: http://dx.doi.org/10.1016/j.measurement.2014.04.007.
N. Shah, M. Ross, K. Trout, Using Soil Moisture Data to Estimate Evapotranspiration and Development of a Physically Based Root Water Uptake Model. In A. Irmak (ed.), Evapotranspiration - Remote Sensing and Modeling, IntechOpen, 2012, doi: https://doi.org/10.5772/18040.
A. Hess, B. Wadzuk, A. Welker, Evapotranspiration estimation in rain gardens using soil moisture sensors, Vadose zone j., vol.1, 2021, doi: https://doi.org/10.1002/vzj2.20100.
Y. Wang, Y. Zhang, X. Yu, G. Jia, Z. Liu, L. Sun, P. Zheng, X. Zhu, Grassland soil moisture fluctuation and its relationship with evapotranspiration, Ecological Indicators, p108196, 2021, doi: https://doi.org/10.1016/j.ecolind.2021.108196.
S. Reibetanz, I. Böhm, C. Schuch, D. Günnewig, M. Püschel, A. Rohr, H. de Beer, F. Herzog, C. Becker, T. Gausling, C. Kubal, M. Stoefer, Bebauungsplan „Energiepark Weesow-Willmersdorf“, Begründung einschl. Umweltbericht, 2010.
L. Zotarelli, M.D. Dukes, C.C. Romero, K.W. Migliaccio, K.T. Morgan. Step by step calculation of the Penman-Monteith evapotranspiration (FAO-56 Method). https://edis.ifas.ufl.edu/pdf/AE/AE45900.pdf (accessed 24/05/2022).
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Ulrike Feistel, Susanna Kettner, Jakob Ebermann, Fabian Mueller, Emese Krajcsi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Sächsisches Staatsministerium für Wissenschaft und Kunst
Grant numbers 2000374654