Large-Scale Agrivoltaics Visualisations for Assessing Landscape Impacts and Social Acceptance
DOI:
https://doi.org/10.52825/agripv.v1i.596Keywords:
Landscape Impact, Social Acceptance, 3D VisualisationsAbstract
Visual landscape impacts are of great importance when it comes to social acceptance measures of renewable energy. Although agrivoltaics seems to have higher acceptance values than other renewable energy infrastructures due to the dual land use approach, it is expected that they have a bigger visual impact on the landscape scenery than ground-mounted installations due to the increased land requirements and clearance heights. This article presents the development of a game-based visualisation approach using open-source software and open data (open government data) for visualising energy landscapes by creating large-scale interactive and immersive 3D visualisations. The results show that the use of open geodata and available open-source gaming technologies can be used to create comprehensive digital VR landscapes for assessing the visual impacts of agrivoltaics. Furthermore, the data-driven approach can provide additional indicators for evaluating planning scenarios and investigating the social acceptability due to renewable energy expansion.Downloads
References
FAO, “The future of food and agriculture: Alternative pathways to 2050”, 2018, Rome: Food and Agriculture Organization of the United Nations.
J. Rogelj, A. Popp, K. V. Calvin, G. Luderer, J. Emmerling, D. Gernaat, S. Fujimori, J. Strefler, T. Hasegawa, G. Marangoni, C. Krey, E. Kriegler, K. Riahi, D.P. van Vuuren, J. Doelman, L. Drouet, J. Edmonds, O. Fricko, M. Harmsen, P. Havlik, F. Humpenöder, E. Stehfest, M. Tavoni, „Scenarios towards limiting global mean temperature increase below 1.5 °C”, Nature Climate Change, 8, 325-332, Mar, 2018, https://doi.org/10.1038/s41558-018-0091-3
A.S. Pascaris, C. Schelly, M. Rouleau & J.M. Pearce, “Do agrivoltaics improve public support for solar? A survey on perceptions, preferences, and priorities”, GRN TECH RES SUSTAIN 2, 8, October 2022, https://doi.org/10.1007/s44173-022-00007-x
M. Trommsdorff, K. Jinsuk, C. Reise, S. Schindele, G. Bopp, A. Bauerle, A. Weselek, P. Högy, T. Obergfell, “Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany”, Renewable and Sustainable Energy Reviews. 140, Apr, 2021, https://doi.org/10.1016/j.rser.2020.110694
P. Schopfer, A. Brennicke, “Pflanzenphysiologie“, 2010, Heidelberg: Spektrum akademischer Verlag.
M., Hitzeroth & A. Megerle, 2013, „Renewable Energy Projects: Acceptance Risks and Their Management.” Renewable and Sustainable Energy Reviews 27, 576–584, Nov, 2013, https://doi.org/10.1016/j.rser.2013.07.022
R. Wüstenhagen, M. Wolsink & M.J. Bürer, „Social acceptance of renewable energy innovation: An introduction to the concept.” Energy Policy 35, 2683–2691, May, 2007, https://doi.org/10.1016/j.enpol.2006.12.001
G. Hübner, J. Pohl, J. Warode, B. Gotchev, D. Ohlhorst, M. Krug, S. Salecki & W. Peters, „Akzeptanzfördernde Faktoren erneuerbarer Energien“, BfN-Skripten 551, 2020, Bonn. https://www.bfn.de/sites/default/files/BfN/service/Dokumente/skripten/skript551.pdf (accessed, 6.11.2022)
P. Scherhaufer, S. Höltinger, B. Salak, T. Schauppenlehner & J. Schmidt, „Patterns of acceptance and non-acceptance within energy landscapes: A case study on wind energy expansion in Austria” Energy Policy 109, 863–870, June, 2017 https://doi.org/10.1016/j.enpol.2017.05.057
D. Ketzer, P. Schlyter, N. Weinberger & C. Rösch, “Driving and Restraining Forces for the Implementation of the Agrophotovoltaics System Technology – A System Dynamics Analysis”, Journal of Environmental Management 270: 110864, Sep, 2015, https://doi.org/10.1016/j.jenvman.2020.110864
J.E. Carlisle, D. Solan, S. L. Kane & J. C. Joe, “Utility-scale solar and public attitudes toward siting: A critical examination of proximity”, Land Use Policy, 58, 491-501. Dec, 2016, https://doi.org/10.1016/j.landusepol.2016.08.006
P. Devine-Wright, “Place Attachment and Public Acceptance of Renewable Energy: A Tidal Energy Case Study”, Journal of Environmental Psychology 31(4): 336–43. Dec, 2011, https://doi.org/10.1016/j.jenvp.2011.07.001
E. Smyth & F. Vanclay, “The Social Framework for Projects: a conceptual but practical model to assist in assessing, planning and managing the social impacts of projects”, Impact Assessment and Project Appraisal. 35(1): 65–80. Feb, 2017, https://doi.org/10.1080/14615517.2016.1271539
T. Schauppenlehner & A. Muhar, “Theoretical Availability versus Practical Accessibility: The Critical Role of Metadata Management in Open Data Portals”, Sustainability, 10(2):545, Feb, 2018, https://doi.org/10.3390/su10020545
M. Manyoky, U. Wissen Hayek, K. Heutschi, R. Pieren & A. Grêt-Regamey, „Developing a GIS-Based Visual-Acoustic 3D Simulation for Wind Farm Assessment”, ISPRS International Journal of Geo-Information 3, 29–48, Jan, 2014, https://doi.org/10.3390/ijgi3010029
M. Smith, N.S. Walford & C. Jimenez-Bescos, „Using 3D modelling and game engine technologies for interactive exploration of cultural heritage: An evaluation of four game engines in relation to roman archaeological heritage”. Digital Applications in Archaeolo-gy and Cultural Heritage 14, e00113. Sep, 2019, https://doi.org/10.1016/j.daach.2019.e00113
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Thomas Schauppenlehner, Karl Bittner, Mathias Baumgartinger-Seiringer
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Klima- und Energiefonds
Grant numbers KR19AC0K17594 -
Österreichische Forschungsförderungsgesellschaft
Grant numbers FO999887012