Agrivoltaics Over Berries in Chile: Potential for Clean Energy Generation and Climate Change Adaption

Authors

DOI:

https://doi.org/10.52825/agripv.v2i.1032

Keywords:

Agrivoltaics Potential, Evapotranspiration, Decentralization

Abstract

Agrivoltaics (AV), the concept of installing photovoltaic (PV) panels on agricultural land, enabling a dual use of the surface, has the potential to foster renewable energy expansion without land use conflict and to protect water from evapotranspiration. Although there is growing interest in AV, there has been no structured analysis of its potential for clean energy generation and climate change adaptation in Chile. In this paper, we provide the first national-level estimate of the AV potential over blueberries, using a combination of filtered geo-datasets and meteorological data to quantify PV yields and impact on evapotranspiration. We find a theoretical potential of 13.4 GWp for AV over blueberries, predominantly in the central and southern regions. The derived potential for AV could provide 22% of the current national electricity generation while lowering irrigation demand by nearly 18 million m³ per year. Finally, we identify about 8,000 GWh of current annual conventional electricity generation that could be regionally replaced by AV, showing the potential to contribute significantly to the decentralization and decarbonization of the Chilean electricity mix. Further research on the agronomic and economic aspects of AV implementation should be carried out to enable synergetic development.

Downloads

Download data is not yet available.

References

SEN, “Energia Abierta,” 2023. http://energiaabierta.cl/ (accessed Apr. 21, 2023).

Review Energy, “Chile necesita agregar otros 30 GW de capacidad de fuentes de energía renovable: Diego Pardow,” 2022. https://www.review-energy.com/otras-fuentes/chile-necesita-agregar-otros-30-gw-de-capacidad-de-fuentes-de-energia-renovable-diego-pardow (accessed Apr. 24, 2023).

Ministerio de Energía, “Agenda de Energia 2022 - 2026.” Gobierno de Chile, 2022.

Banco Central Chile, “PIB por clase de actividad económica, trimestral, precios corrientes,” 2023. https://www.bcentral.cl/web/banco-central/cuentas-nacionales-trimestrales-estadisticas-en-excel (accessed Apr. 24, 2023).

ODEPA, “Catastros frutícolas,” 2023. https://www.odepa.gob.cl/estadisticas-del-sector/catastros-fruticolas (accessed Apr. 21, 2023).

CR2, “La megasequía 2010-2019: Una lección para el futuro,” 2019. https://www.cr2.cl/megasequia/.

EH 2030, “Radiografía del Agua Brecha y Riesgo Hídrico en Chile,” 2018.

J. Haas et al., “Sunset or sunrise? Understanding the barriers and options for the massive deployment of solar technologies in Chile,” Energy Policy, vol. 112, no. June 2016, pp. 399–414, 2018, doi: https://doi.org/10.1016/j.enpol.2017.10.001.

G. A. Barron-Gafford et al., “Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands,” Nat. Sustain., vol. 2, no. 9, pp. 848–855, 2019, doi: https://doi.org/10.1038/s41893-019-0364-5.

F. Schönberger and D. Jung, “Assessment of Economic Synergies of Agrivoltaics in the Distributed Generation Segment in Chile -Techno-Economic Analysis and Policy Recommendation,” 2022.

Odepa (Oficina de Estudios y Políticas Agrarias), “ICET | Sistema de Consulta Estadístico Territorial,” 2023. https://icet.odepa.gob.cl/ (accessed Apr. 25, 2023).

W. F. Holmgren, C. W. Hansen, and M. A. Mikofski, “pvlib python: a python package for modeling solar energy systems.,” J. Open Source Softw., vol. 3(29), p. 884, 2018, [Online]. Available: https://doi.org/10.21105/joss.00884.

Huld, T., Müller, R., and Gambardella, A., “A new solar radiation database for estimating PV performance in Europe and Africa,” Sol. Energy, vol. 86, pp. 1803–1815, 2012.

R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, “Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper,” in FAO, 1998.

|Méso|Star>, “Solstice,” 2020, [Online]. Available: https://www.meso-star.com/projects/solstice/solstice.html.

A. F. Souka and H. . Safwat, “Determination of the optimum orientations for the double exposure flat-plate collector and its reflections,” Sol. Energy, vol. 10, pp. 170–174, 1966.

D. Faiman, “Assessing the outdoor operating temperature of photovoltaic modules,” Prog. Photovoltaics Res. Appl., vol. 16, no. 4, pp. 307–315, Jun. 2008, doi: https://doi.org/10.1002/pip.813.

A. P. Dobos, “PVWatts Version 5 Manual,” 2014.

H. L. Penman, “Natural evaporation from open water, bare soil and grass,” Proc. R. Soc. London. Ser. A. Math. Phys. Sci., vol. 193, no. 1032, pp. 120–145, Apr. 1948, doi: https://doi.org/10.1098/rspa.1948.0037.

J. L. Monteith, “Evaporation and Environment,” Symp. Soc. Exp. Biol., vol. 19, pp. 205–234, 1965.

M. Vremec and R. Collenteur, “pyet - a Python package to estimate potential and reference evapotranspiration,” 2021, doi: https://doi.org/10.5194/egusphere-egu21-15008.

D. R. Bryla, “Crop evapotranspiration and irrigation scheduling in blueberry,” in Evapotranspiration—From measurements to agricultural and environmental applications, 2011, pp. 167–186.

CEN, “Reportes, Estadísticas y Plataformas de Uso Frecuente,” 2023. https://www.coordinador.cl/reportes-y-estadisticas/#Estadisticas (accessed Apr. 21, 2023).

EH 2030, Transición Hídrica: El futuro del agua en Chile. Fundación Chile. Fundación Chile, 2019.

Beuth, “DIN SPEC 91434:2021-05 Agri-photovoltaic systems - Requirements for primary agricultural use.” Beuth, 2021, doi: https://dx.doi.org/10.31030/3257526.

Downloads

Published

2024-05-23

How to Cite

Jung, D., Schönberger, F., & Moraga , F. (2024). Agrivoltaics Over Berries in Chile: Potential for Clean Energy Generation and Climate Change Adaption . AgriVoltaics Conference Proceedings, 2. https://doi.org/10.52825/agripv.v2i.1032

Conference Proceedings Volume

Section

Potential for World Economy and Ecosystems

Funding data