Machine-Actionable Metadata for Software and Software Management Plans for NFDI
DOI:
https://doi.org/10.52825/cordi.v1i.279Keywords:
Research Software, Management Plan, Metadata, Machine-ActionableAbstract
Research data is on its way to be recognized as a first-class citizen in research; however, and despite its importance for science, software still has a long way to go. Recent initiatives are paving the way, including FAIR for Research Software and Software Management Plans. A step further towards machine-actionability is adding a structured metadata layer. Here we discuss some metadata elements useful to represent software and integrate it into management plans, and how it could be of benefit for NFDI.
Downloads
References
Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3: 160018. https://doi.org/10.1038/sdata.2016.18
Chue Hong, NP. et al. FAIR Principles for Research Software (FAIR4RS Principles). Research Data Alliance. 2022 https://doi.org/10.15497/RDA00068
Alves, R., Bampalikis, D., Castro, L., Fernández, J. M., Harrow, J., Kuzak, M., … Via, A. (2021, October 25). ELIXIR Software Management Plan for Life Sciences. https://doi.org/10.37044/osf.io/k8znb
Martinez-Ortiz C, Martinez Lavanchy P, Sesink L, Olivier BG, Meakin J, de Jong M, et al. Practical guide to Software Management Plans. Zenodo; 2022 Oct. https://doi.org/10.5281/zenodo.7248877
Giraldo O, Alves R, Bampalikis D, Fernández González JM, Martin Del Pico E, Psomopoulos F, et al. A metadata analysis for machine-actionable Software Mng Plans - Poster. ZB MED - Informationszentrum Lebenswissenschaften; 2023. Available: https://doi.org/10.4126/FRL01-006440396
Scheliga KS, Pampel H, Konrad U, Fritzsch B, Schlauch T, Nolden M, et al. Dealing with research software: Recommendations for best practices. 2019. https://doi.org/10.2312/os.helmholtz.003
Jiménez RC, Kuzak M, Alhamdoosh M, Barker M, Batut B, Borg M, et al. Four simple recommendations to encourage best practices in research software. F1000Res. 2017;6: 876. https://doi.org/10.12688/f1000research.11407.1
Schindler D, Bensmann F, Dietze S, Krüger F. The role of software in science: a knowledge graph-based analysis of software mentions in PubMed Central. PeerJ Computer Science 8:e835. 2022. https://doi.org/10.7717/peerj-cs.835
Guha RV, Brickley D, Macbeth S (2016) Schema.org. Communications of the ACM 59 (2): 44‑51. https://doi.org/10.1145/2844544
Gray AJG, Goble C, Jimenez RC (2017) From Potato Salad to Protein Annotation. ISWC Posters and Demo session. URL: http://ceur-ws.org/Vol-1963/paper579.pdf
Boettiger C. et al. CodeMeta: Minimal metadata schemas for science software and code, in JSON-LD. (Version 2.0). Available at https://github.com/codemeta/codemeta
Ison, J. et al. (2015). Tools and data services registry: a community effort to document bioinformatics resources. Nucleic Acids Research. https://doi.org/10.1093/nar/gkv1116
Abramatic J-F, Di Cosmo R, Zacchiroli S. Building the universal archive of source code. Commun ACM. 2018;61: 29–31. https://dl.acm.org/doi/10.1145/3183558
Miksa T, Oblasser S, Rauber A. Automating Research Data Management Using Machine-Actionable Data Management Plans. ACM Trans Manage Inf Syst. 2021;13: 18:1-18:22. https://doi.org/10.1145/3490396
Giraldo O., Geist L., Quiñones N., Solanki D., Rebholz-Schuhmann D., and Castro LJ. Machine-actionable Software Management Plan Ontology (maSMP ontology) (Version 0.0.1) [Dataset]. https://doi.org/10.5281/zenodo.7806639
Schindler, D., Bensmann, F., Dietze, S., Krüger, F., SoMeSci—A 5 Star Open Data Gold Standard Knowledge Graph of Software Mentions in Scientific Articles, 30th ACM International Conference on Information & Knowledge Management (CIKM2021), ACM 2021. https://doi.org/10.1145/3459637.3482017
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2023 Olga Giraldo, Danilo Dessi, Stefan Dietze, Dietrich Rebholz-Schuhmann, Leyla Jael Castro
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-06-29
Published 2023-09-07
Funding data
-
Horizon 2020
Grant numbers 101017536 -
Deutsche Forschungsgemeinschaft
Grant numbers 460234259